Modulated fiber ring laser and its application in high-sensitivity temperature sensors
Date
2016Author
Version
Acceso abierto / Sarbide irekia
Type
Contribución a congreso / Biltzarrerako ekarpena
Version
Versión publicada / Argitaratu den bertsioa
Impact
|
10.1117/12.2236847
Abstract
This work presents an experimental demonstration of a scheme based on an internally modulated fiber ring laser for high-sensitivity temperature sensing. The attained temperature resolution has been as low as ± 2pm even when a commercial FBG with a sensitivity of 10 pm/°C was used. Thus, a fivefold improvement in the temperature sensor resolution can be achieved when compared to a simple FBG inter ...
[++]
This work presents an experimental demonstration of a scheme based on an internally modulated fiber ring laser for high-sensitivity temperature sensing. The attained temperature resolution has been as low as ± 2pm even when a commercial FBG with a sensitivity of 10 pm/°C was used. Thus, a fivefold improvement in the temperature sensor resolution can be achieved when compared to a simple FBG interrogation scheme. In addition to this, the measuring range could be selected only by changing the frequency modulation of the fiber ring laser. This technology also allows to triple the photodiode bandwidth unambiguously when temperature or strain measurements are carried out, which is a remarkable achievement in term of cost reduction. [--]
Subject
Fiber ring laser,
Temperature sensor,
Amplitude modulation,
Single-sideband modulation
Publisher
SPIE
Published in
Sixth European Workshop on Optical Fibre Sensors, edited by Elfed Lewis, Proc. of SPIE Vol. 9916, 99160B
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica y Electrónica /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektrikoa eta Elektronikoa Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute of Smart Cities - ISC
Publisher version
Sponsorship
This work was supported by the Spanish Government projects TEC2013-47264-C2-2-R and TEC2014-58048-C2-1-P.