Mostrar el registro sencillo del ítem

dc.creatorAranguren Garacochea, Patriciaes_ES
dc.creatorAstrain Ulibarrena, Davides_ES
dc.date.accessioned2019-10-23T11:49:45Z
dc.date.available2019-10-23T11:49:45Z
dc.date.issued2016
dc.identifier.urihttps://hdl.handle.net/2454/35289
dc.description.abstractOne of the biggest challenges of the twenty‐first century is to satisfy the demand for electrical energy in an environmentally speaking clean way. Thus, it is very important to search for new alternative energy sources along with increasing the efficiency of current processes. Thermoelectric power generation, by means of harvesting waste heat and converting it into electricity, can help to achieve above‐mentioned goal. Nowadays, efficiency of thermoelectric power generators limits them to become key technology in electric power generation, but their performance has potential of being optimized, if thermal design of such generators is optimized. Heat exchangers located on both sides of thermoelectric modules (TEMs), mass flow of refrigerants and occupancy ratio (the area covered by TEMs related to base area), among others, need to be fine‐tuned in order to obtain the maximum net power generation (thermoelectric power generation minus consumption of auxiliary equipment). Finned dissipator, cold plate, heat pipe and thermosiphon are experimentally tested to maximize net thermoelectric generation on real‐working furnace based on computational model. Maximum generation of 137 MWh/year using thermosiphons is achieved with 32% of area covered by TEMs.en
dc.format.extent25 p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherInTechOpenen
dc.relation.ispartofThermoelectrics for power generation: a look at trends in the technology. Edited by Sergey Skipidarov and Mikhail Nikitin. IntechOpen, 2016. E-ISBN: 978-953-51-4132-7en
dc.rights© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citeden
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.subjectThermoelectric generatoren
dc.subjectOptimizationen
dc.subjectComputational modelen
dc.subjectHeat exchangeren
dc.subjectOccupancy ratioen
dc.titleThermoelectric power generation optimization by thermal design meansen
dc.typeinfo:eu-repo/semantics/bookParten
dc.typeCapítulo de libro / Liburuen kapituluaes
dc.contributor.departmentInstitute of Smart Cities - ISCes_ES
dc.contributor.departmentIngeniería Mecánica, Energética y de Materialeses_ES
dc.contributor.departmentMekanika, Energetika eta Materialen Ingeniaritzaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.5772/65849
dc.relation.publisherversionhttps://doi.org/10.5772/65849
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.type.versionVersión publicada / Argitaratu den bertsioaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited
La licencia del ítem se describe como © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt