Show simple item record

dc.creatorFernández, Susanaes_ES
dc.creatorBoscá, Albertoes_ES
dc.creatorPedrós, Jorgees_ES
dc.creatorInés Ortigosa, Andreaes_ES
dc.creatorFernández Vallejo, Montserrates_ES
dc.creatorArnedo Gil, Israeles_ES
dc.creatorGonzález, José Pabloes_ES
dc.date.accessioned2020-02-18T13:10:06Z
dc.date.available2020-02-18T13:10:06Z
dc.date.issued2019
dc.identifier.issn2072-666X
dc.identifier.urihttps://hdl.handle.net/2454/36281
dc.description.abstractNew architectures of transparent conductive electrodes (TCEs) incorporating graphene monolayers in different configurations have been explored with the aim to improve the performance of silicon-heterojunction (SHJ) cell front transparent contacts. In SHJ technology, front electrodes play an important additional role as anti-reflectance (AR) coatings. In this work, different transparent-conductive-oxide (TCO) thin films have been combined with graphene monolayers in different configurations, yielding advanced transparent electrodes specifically designed to minimize surface reflection over a wide range of wavelengths and angles of incidence and to improve electrical performance. A preliminary analysis reveals a strong dependence of the optoelectronic properties of the TCEs on (i) the order in which the different thin films are deposited or the graphene is transferred and (ii) the specific TCO material used. The results shows a clear electrical improvement when three graphene monolayers are placed on top on 80-nm-thick ITO thin film. This optimum TCE presents sheet resistances as low as 55 Ω/sq and an average conductance as high as 13.12 mS. In addition, the spectral reflectance of this TCE also shows an important reduction in its weighted reflectance value of 2-3%. Hence, the work undergone so far clearly suggests the possibility to noticeably improve transparent electrodes with this approach and therefore to further enhance silicon-heterojunction cell performance. These results achieved so far clearly open the possibility to noticeably improve TCEs and therefore to further enhance SHJ contact-technology performance.en
dc.description.sponsorshipThis research was partially funded by the Spanish Ministry of Science & Innovation under the project DIGRAFEN, grant number (ENE2017-88065-C2-1-R) and (ENE2017-88065-C2-2-R). J.P. acknowledges support from Spanish MINECO (Grant RyC-2015-18968). R.S.F. acknowledges support from European Union’s Horizon 2020 Research and Innovation Programme under Marie Sklodowska-Curie Grant Agreement No 642688. M.A.P. acknowledges support from Spanish MINECO (Grant FJCI-2016-29146).en
dc.format.extent11 p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherMDPIen
dc.relation.ispartofMicromachines, 2019, 10 (6), 402en
dc.rights© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectGrapheneen
dc.subjectTransparent electrodesen
dc.subjectSilicon heterojunction solar devicesen
dc.titleAdvanced graphene-based transparent conductive electrodes for photovoltaic applicationsen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentUniversidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentNafarroako Unibertsitate Publikoa. Ingeniaritza Elektriko, Elektroniko eta Telekomunikazio Sailaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.3390/mi10060402
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/2PE/ENE2017-88065en
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/642688en
dc.relation.publisherversionhttps://doi.org/10.3390/mi10060402
dc.type.versionVersión publicada / Argitaratu den bertsioaes
dc.type.versioninfo:eu-repo/semantics/publishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Except where otherwise noted, this item's license is described as © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.