• Login
    View Item 
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Estadística, Informática y Matemáticas - Estatistika, Informatika eta Matematika Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Artículos de revista DEIM - EIMS Aldizkari artikuluak
    • View Item
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Estadística, Informática y Matemáticas - Estatistika, Informatika eta Matematika Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Artículos de revista DEIM - EIMS Aldizkari artikuluak
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the nonlinear stability of the triangular points in the circular spatial restricted three-body problem

    Thumbnail
    View/Open
    RCD_CArcamoetal.pdf (3.578Mb)
    Read access available from
    2021-01-25
    Date
    2020
    Author
    Cárcamo Díaz, Daniela Jacqueline 
    Palacián Subiela, Jesús Francisco Upna
    Vidal Díaz, Claudio 
    Yanguas Sayas, Patricia Upna
    Version
    Acceso embargado / Sarbidea bahitua dago
    xmlui.dri2xhtml.METS-1.0.item-type
    Artículo / Artikulua
    Version
    Versión aceptada / Onetsi den bertsioa
    Project Identifier
    ES/2PE/MTM 2017-88137 
    Impact
     
     
     
    10.1134/S156035472002001X
     
     
     
    Show full item record
    Abstract
    The well-known problem of the nonlinear stability of L4 and L5 in the circular spatial restricted three-body problem is revisited. Some new results in the light of the concept of Lie (formal) stability are presented. In particular, we provide stability and asymptotic estimates for three specific values of the mass ratio that remained uncovered. Moreover, in many cases we improve the estimates fou ... [++]
    The well-known problem of the nonlinear stability of L4 and L5 in the circular spatial restricted three-body problem is revisited. Some new results in the light of the concept of Lie (formal) stability are presented. In particular, we provide stability and asymptotic estimates for three specific values of the mass ratio that remained uncovered. Moreover, in many cases we improve the estimates found in the literature. [--]
    Subject
    Restricted three-body problem, L4 and L5, Elliptic equilibria, Resonances, Formal and Lie stability, Exponential estimates
     
    Publisher
    Pleiades Publishing
    Published in
    Regular and Chaotic Dynamics, 2020, Vol. 25, No. 2, pp. 131–148
    Departament
    Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas / Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila / Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. InaMat - Institute for Advanced Materials
     
    Publisher version
    https://doi.org/10.1134/S156035472002001X
    URI
    https://hdl.handle.net/2454/36709
    Sponsorship
    The authors are partially supported by Project MTM 2017-88137-C2-1-P of the Ministry of Science, Innovation and Universities of Spain. D. Cárcamo-Díaz acknowledges support from CONICYT PhD/2016-21161143. C. Vidal is partially supported by Fondecyt grant 1180288.
    Appears in Collections
    • Artículos de revista DEIM - EIMS Aldizkari artikuluak [108]
    • Artículos de revista - Aldizkari artikuluak [2947]
    • Artículos de revista InaMat - InaMat aldizkari artikuluak [147]
    Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback
     

     

    Browse

    All of Academica-eCommunities & CollectionsAuthorsAuthors By Issue DateTitlesSubjectsBy DegreeThis CollectionAuthorsAuthors By Issue DateTitlesSubjectsBy Degree

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback