Mostrar el registro sencillo del ítem

dc.creatorSamanes Pascual, Javieres_ES
dc.creatorGarcía-Barberena Labiano, Javieres_ES
dc.date.accessioned2020-05-15T07:50:04Z
dc.date.available2020-05-15T07:50:04Z
dc.date.issued2014
dc.identifier.issn0038-092X
dc.identifier.urihttps://hdl.handle.net/2454/36897
dc.description.abstractIn this paper, a detailed model for the transient simulation of solar cavity receivers for concentrating solar power plants is presented. The proposed model aims to consider all the major phenomena influencing the performance of a cavity receiver, including radiation, convection and conduction heat transfer mechanisms. For the radiation heat exchange within the cavity, the radiosity method is implemented, where the view factor calculation for all the active and passive surfaces is performed by a ray tracing algorithm programmed in a free software environment for statistical computing, namely R. A one-dimensional modeling approach is used for the tubes constituting the receiver active panels, through which the heat transfer fluid (HTF) is pumped. The governing partial differential equations are solved numerically by applying the finite volume method. Convective heat losses are modeled through different correlations for natural and forced convection heat losses from the specific literature. Once the thermal behavior has been haracterized, the geometry of the model is later fixed to check the consistency of the model and to study its dynamic characteristics. A specific 51.6 MWth, PS10 like receiver is used in this paper, although the implemented model has the flexibility to allow a variable number of panels and geometric configurations. At last, an adaptive neural controller, designed and trained offline, controls the outlet temperature of the molten salts to the desired operating value. Results for transient simulations are shown in the paper, demonstrating the plausibility of the estimations obtained with the developed model. The proposed model has been implemented in the Modelica language and based on the Modelica Standard Library (MSL) modeling approach.en
dc.format.extent31 p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofSolar Energy, 2014, 110, 789-806en
dc.rights© 2014 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectConcentrated Solar Power (CSP) tower cavity receiveren
dc.subjectTransient performance simulationen
dc.subjectAdaptive PI neural controlleren
dc.subjectModelicaen
dc.titleA model for the transient performance simulation of solar cavity receiversen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritzaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.1016/j.solener.2014.10.015
dc.relation.publisherversionhttps://doi.org/10.1016/j.solener.2014.10.015
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.type.versionVersión aceptada / Onetsi den bertsioaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2014 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0
La licencia del ítem se describe como © 2014 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt