Improving the short‑term efficiency of rock phosphate‑based fertilizers in pastures by using edaphic biostimulants
Date
2016Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Project Identifier
ES/1PE/TIN2016-77356-P
Impact
|
10.1186/s40538-016-0057-5
Abstract
Background: The use of reactive rock phosphate (RP) in acidic soils as a phosphate (P) source for pastures and crops presents attractive economic advantages with respect to soluble phosphate. However, some studies have demonstrated that the short-term (1-year) efficiency of RP, compared with that of water-soluble P, is relatively poor. This fact penalizes not only the yield and quality of the ear ...
[++]
Background: The use of reactive rock phosphate (RP) in acidic soils as a phosphate (P) source for pastures and crops presents attractive economic advantages with respect to soluble phosphate. However, some studies have demonstrated that the short-term (1-year) efficiency of RP, compared with that of water-soluble P, is relatively poor. This fact penalizes not only the yield and quality of the earlier harvests, but even the whole final yield when the crop is affected by some abiotic or biotic stress at the beginning of the cycle. In the present study, we investigated the ability of new edaphic biostimulants to increase the short-term efficiency of RP-based fertilizer as a P source for pastures cultivated in acid soils. To this end, we have granulated rock phosphate with two edaphic biostimulants: tryptophan and a heteromolecular organic complex formed by humic acid and tryptophan through iron bridges, and compared their short-term P fertilizer efficacy with that of single superphosphate and rock phosphate. Results: Soil incubation studies showed that the heteromolecular complex humic acid–tryptophan and Tryptophan were able to increase soil CO2 production compared with native soil, rock phosphate, and superphosphate. Likewise, the presence of humic acid–tryptophan complex and Trp significantly increases plant-available phosphate compared with rock phosphate, up to levels similar to those of superphosphate. Plant (ray grass)–soil–pot studies showed that rock phosphate/(humic acid–tryptophan) formulation yielded values for both ray grass dry matter production and shoot P concentration, clearly higher than those of rock phosphate and rock phosphate/tryptophan. In addition, the results associated with rock phosphate/(humic acid–tryptophan) were similar to those for superphosphate, after 3 months of cultivation. Conclusions: Taken together, these results showed the suitability of the use of specific humic acid-based edaphic biostimulants to improve the short-term effect of rock phosphate fertilizers as a phosphate source for pastures cultivated in acid soils. [--]
Subject
Edaphic biostimulants,
Rock phosphate,
Phosphate fertilizer,
Pastures,
Plant-available phosphate soil microbial activity,
Humic acid,
Humic acid-based heteromolecular complexes
Publisher
Springer
Published in
Chemical and Biological Technologies in Agriculture, 2016, 3:5
Departament
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
Publisher version
Sponsorship
This Research Project has been supported by a Grant from CDTI and Government of Navarra, as well the Roullier Group.
Appears in Collections
Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.
Except where otherwise noted, this item's license is described as © 2016 Fernández et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.