Avoiding the order reduction when solving second-order in time PDEs with Fractional Step Runge–Kutta–Nyström methods

View/ Open
Date
2016Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
Impact
|
10.1016/j.camwa.2016.02.015
Abstract
We study some of the main features of Fractional Step Runge–Kutta–Nyström methods when they are used to integrate Initial–Boundary Value Problems of second order in time, in combination with a suitable spatial discretization. We focus our attention on the order reduction phenomenon, which appears if classical boundary conditions are taken at the internal stages. This drawback is specially hard wh ...
[++]
We study some of the main features of Fractional Step Runge–Kutta–Nyström methods when they are used to integrate Initial–Boundary Value Problems of second order in time, in combination with a suitable spatial discretization. We focus our attention on the order reduction phenomenon, which appears if classical boundary conditions are taken at the internal stages. This drawback is specially hard when time dependent boundary conditions are considered. In this paper we present an efficient technique, very simple and computationally cheap, which allows us to avoid the order reduction; such technique consists in modifying the boundary conditions for the internal stages of the method. [--]
Subject
Fractional Step Runge–Kutta–Nyström methods,
Second-order partial differential equations,
Order reduction,
Stability,
Consistency
Publisher
Elsevier
Published in
Computers and Mathematics with Applications, 2016, 71(7), 1425-1447
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática /
Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila
Publisher version
Sponsorship
M.J. Moreta had financial support from MTM 2015-66837-P. B. Bujanda had financial support from TEC 2013-45585-C2-1-R. J.C. Jorge had financial support from MTM 2014-52859.