• Login
    View Item 
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ingeniería Matemática e Informática - Matematika eta Informatika Ingeniaritza Saila
    • Artículos de revista DIMI - MIIS Aldizkari artikuluak
    • View Item
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ingeniería Matemática e Informática - Matematika eta Informatika Ingeniaritza Saila
    • Artículos de revista DIMI - MIIS Aldizkari artikuluak
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New series expansions of the 3F2 function

    Thumbnail
    View/Open
    3F2expansions.pdf (482.2Kb)
    Date
    2015
    Author
    López García, José Luis Upna
    Pagola Martínez, Pedro Jesús Upna
    Pérez Sinusía, Ester Upna
    Version
    Acceso abierto / Sarbide irekia
    Type
    Artículo / Artikulua
    Version
    Versión enviada / Bidali den bertsioa
    Impact
     
     
     
    10.1016/j.jmaa.2014.07.065
     
     
     
    Show full item record
    Abstract
    We can use the power series definition of 3F2(a1, a2, a3; b1, b2; z) to compute this function for z in the unit disk only. In this paper we obtain new expansions of this function that are convergent in larger domains. Some of these expansions involve the polynomial 3F2(a1,−n, a3; b1, b2; z) evaluated at certain points z. Other expansions involve the Gauss hypergeometric function 2F1. The doma ... [++]
    We can use the power series definition of 3F2(a1, a2, a3; b1, b2; z) to compute this function for z in the unit disk only. In this paper we obtain new expansions of this function that are convergent in larger domains. Some of these expansions involve the polynomial 3F2(a1,−n, a3; b1, b2; z) evaluated at certain points z. Other expansions involve the Gauss hypergeometric function 2F1. The domain of convergence is sometimes a disk, other times a half-plane, other times the region |z|2 < 4|1 − z|. The accuracy of the approximation given by these expansions is illustrated with numerical experiments. [--]
    Subject
    Generalized hypergeometric function 3F2, Approximation by 2F1 functions, Convergent series expansions
     
    Description
    Esta es la versión no revisada del artículo: José L. López, Pedro Pagola, Ester Pérez Sinusía, New series expansions of the 3F2 function. J. Math. Anal. Appl, 421 (2015) 982-995. Pages 982-995, ISSN 0022-247X. Se puede consultar la versión publicada en https://doi.org/10.1016/j.jmaa.2014.07.065.
    Departament
    Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática / Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila
     
    URI
    https://hdl.handle.net/2454/38529
    Sponsorship
    The authors acknowledge Dirección General de Ciencia y Tecnología (grant No. MTM2010-21037) for financial support.
    Appears in Collections
    • Artículos de revista DIMI - MIIS Aldizkari artikuluak [57]
    • Artículos de revista - Aldizkari artikuluak [3027]
    Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback
     

     

    Browse

    All of Academica-eCommunities & CollectionsAuthorsAuthors By Issue DateTitlesSubjectsBy DegreeThis CollectionAuthorsAuthors By Issue DateTitlesSubjectsBy Degree

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback