Mostrar el registro sencillo del ítem

dc.creatorLuis Pérez, Carmeloes_ES
dc.date.accessioned2021-01-11T11:43:49Z
dc.date.available2021-01-11T11:43:49Z
dc.date.issued2020
dc.identifier.issn2227-7390
dc.identifier.urihttps://hdl.handle.net/2454/38973
dc.description.abstractIn Manufacturing Engineering there is a need to be able to model the behavior of technological variables versus input parameters in order to predict their behavior in advance, so that it is possible to determine the levels of variation that lead to optimal values of the response variables to be obtained. In recent years, it has been a common practice to rely on regression techniques to carry out the above-mentioned task. However, such models are sometimes not accurate enough to predict the behavior of these response variables, especially when they have significant non-linearities. In this present study a comparative analysis between the precision of different techniques based on conventional regression and soft computing is initially carried out. Specifically, regression techniques, based on the response surface model, as well as the use of artificial neural networks and fuzzy inference systems along with adaptive neuro-fuzzy inference systems will be employed to predict the behavior of the aforementioned technological variables. It will be shown that when there are difficulties in predicting the response parameters by using regression models, soft computing models are highly effective, being much more efficient than conventional regression models. In addition, a new method is proposed in this study that consists of using an iterative process to obtain a fuzzy inference system from a design of experiments and then using an adaptive neuro-fuzzy inference system for tuning the constants of the membership functions. As will be shown, with this method it is possible to obtain improved results in the validation metrics. The means of selecting the membership functions to develop this model from the design of experiments is discussed in this present study in order to obtain an initial solution, which will be then tuned by using an adaptive neuro-fuzzy inference system, to predict the behavior of the response variables. Moreover, the obtained results will also be compared.en
dc.format.extent39 p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherMDPIen
dc.relation.ispartofMathematics, 2020, 8(9):1390en
dc.rights© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectFISen
dc.subjectANFISen
dc.subjectANNen
dc.subjectRegressionen
dc.subjectModelingen
dc.titleA proposal of an adaptive neuro-fuzzy inference system for modeling experimental data in manufacturing engineeringen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentIngenieríaes_ES
dc.contributor.departmentIngeniaritzaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.3390/MATH8091390
dc.relation.publisherversionhttps://doi.org/10.3390/MATH8091390
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.type.versionVersión publicada / Argitaratu den bertsioaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
La licencia del ítem se describe como © 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt