Show simple item record

dc.creatorMatos, Sérgio A.es_ES
dc.creatorTeixeira, Jorge P.es_ES
dc.creatorCosta, Jorge R.es_ES
dc.creatorFernandes, Carlos A.es_ES
dc.creatorRío Bocio, Carlos deles_ES
dc.date.accessioned2021-02-19T08:12:06Z
dc.date.available2021-04-06T23:00:11Z
dc.date.issued2020
dc.identifier.citationS. A. Matos et al., '3-D-Printed Transmit-Array Antenna for Broadband Backhaul 5G Links at V-Band,' in IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 6, pp. 977-981, June 2020, doi: 10.1109/LAWP.2020.2985399.en
dc.identifier.issn1548-5757 (Electronic)
dc.identifier.urihttps://hdl.handle.net/2454/39259
dc.description.abstractThe low cost and compactness of transmit-array antennas (TAs) make them attractive for 5G backhaul links. However, the TA advantage is less obvious when considering the broadband operation requirement. Two main factors influence the bandwidth performance, namely: 1) the bandwidth of the unit cells, and 2) the number of 360° phase wrapping zones in the aperture, which are designed for a specific frequency. Herein, we overcome these limitations by using all-dielectric unit cells (inherently broadband) and by developing a general method to quantify and manage the intricate relation between antenna gain, bandwidth, and antenna height. Based on this framework we optimize, as an example, a TA design (focal distance, \boldsymbol{F} = \text{63 mm} and aperture diameter \boldsymbol{D} = \text{80 mm}) to comply with typical gain specification for 5G backhaul links (>30 dBi) in the WiGiG band (from 57 to 66 GHz). The feed is a dedicated compact horn (\text{8 }\times \text{5} \times \text{22 mm}^3) that provides a proper illumination of the aperture. Additive manufacturing is used to simplify the manufacturing process of the antenna. A very good agreement between simulations and experimental results is obtained, achieving good aperture efficiency for this type of antenna (42%), which rivals with existing solutions based on more expensive manufacturing techniques.en
dc.description.sponsorshipThis work was supported under Grant ISTA-BM-2016 and in part by Fundação para a Ciência e Tecnologia (FCT) under Projects PTDC/EEI-TEL/30323/2017 (ADAM3D) and UIDB/EEA/50008/2020.en
dc.format.extent6p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherIEEEen
dc.relation.ispartofIEEE Antennas and Wireless Propagation Letters, 2020, 19(6), 977-981en
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.en
dc.subject5G backhaul linken
dc.subjectAdditive manufacturingen
dc.subjectTransmit-arrayen
dc.subjectV-band horn antennaen
dc.subjectWiGiG banden
dc.title3-D-printed transmit-array antenna for broadband backhaul 5G links at V-banden
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentUniversidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentNafarroako Unibertsitate Publikoa. Ingeniaritza Elektriko, Elektroniko eta Telekomunikazio Sailaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.embargo.terms2021-04-06
dc.identifier.doi10.1109/LAWP.2020.2985399
dc.relation.publisherversionhttps://doi.org/10.1109/LAWP.2020.2985399
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.type.versionVersión aceptada / Onetsi den bertsioaes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record