Optical fiber vacuum sensor based on etched SMS structure and PDMS coating
Date
2020Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
ES/1PE/TEC2016-79367
Impact
|
10.1109/JSEN.2020.3015577
Abstract
In this work, an optical fiber vacuum sensor based on a single-mode multimode single-mode (SMS) structure coated with polydimethylsiloxane (PDMS) is studied. The SMS structure generates an interferometric pattern based on multimode interference. The structure is dip-coated with a layer of PDMS, whose optical properties change when it is subjected to varying vacuum pressure. Different strategies a ...
[++]
In this work, an optical fiber vacuum sensor based on a single-mode multimode single-mode (SMS) structure coated with polydimethylsiloxane (PDMS) is studied. The SMS structure generates an interferometric pattern based on multimode interference. The structure is dip-coated with a layer of PDMS, whose optical properties change when it is subjected to varying vacuum pressure. Different strategies are applied in an attempt to improve the final performance of the sensor, such as decreasing the diameter of the fiber and modifying the properties of the coating by modifying the proportion of solvent. Decreasing the diameter of the optical fiber and using toluene as a solvent are both proved to be successful strategies for increasing the sensitivity of the sensor. The devices are studied in the 1×10-3–10 mbar range with a maximum wavelength shift of 12 nm, leading to a maximum sensitivity of 35 nm/mbar. The simplicity of the fabrication process, which can be applied to more sensitive structures, suggests that PDMS may be a good choice for the development of optical fiber vacuum sensors. [--]
Subject
Optical fiber,
Modal interferometer,
Vacuum sensor,
Polydimethylsiloxane,
PDMS
Publisher
IEEE
Published in
IEEE Sensors Journal, 2020
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute of Smart Cities - ISC
Publisher version
Sponsorship
This work was supported by the Spanish Agencia Estatal de Investigación (AEI), Fondo Europeo de Desarrollo Regional (FEDER) (TEC2016-79367-C2-2-R) and a Torres-Quevedo grant from the Science and Innovation Ministry (PTQ2018-010221).