• Login
    View Item 
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ingeniería Eléctrica, Electrónica y de Comunicación - Ingeniaritza Elektriko et Elektronikoa eta Komunikazio Ingeniaritza Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Artículos de revista DIEC - IEKS Aldizkari artikuluak
    • View Item
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ingeniería Eléctrica, Electrónica y de Comunicación - Ingeniaritza Elektriko et Elektronikoa eta Komunikazio Ingeniaritza Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Artículos de revista DIEC - IEKS Aldizkari artikuluak
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Maximum expected ramp rates using cloud speed sensor measurements

    Thumbnail
    View/Open
    2020101337_Wang_MaximumExpected.pdf (3.981Mb)
    Date
    2020
    Author
    Wang, Guang Chao 
    Kurtz, Ben 
    Bosch, Juan Luis 
    Parra Laita, Íñigo de la Upna Orcid
    Kleissl, Jan 
    Version
    Acceso abierto / Sarbide irekia
    Type
    Artículo / Artikulua
    Version
    Versión publicada / Argitaratu den bertsioa
    Project Identifier
    ES/1PE/DPI2016-80641-R 
    ES/1PE/DPI2016-80642-R 
    Impact
     
     
     
    10.1063/5.0021875
     
     
     
    Show full item record
    Abstract
    Large ramps and ramp rates in photovoltaic (PV) power output are of concern and sometimes even explicitly restricted by grid operators. Battery energy storage systems can smooth the power output and maintain ramp rates within permissible limits. To enable PV plant and energy storage system design and planning, a method to estimate the largest expected ramps for a given location is proposed. Becau ... [++]
    Large ramps and ramp rates in photovoltaic (PV) power output are of concern and sometimes even explicitly restricted by grid operators. Battery energy storage systems can smooth the power output and maintain ramp rates within permissible limits. To enable PV plant and energy storage system design and planning, a method to estimate the largest expected ramps for a given location is proposed. Because clouds are the dominant source of PV power output variability, an analytical relationship between the worst expected ramp rate, cloud motion vector, and the geometrical layout of the PV plant is developed. The ability of the proposed method to bracket actual ramp rates is assessed over 10 months under different meteorological conditions, demonstrating an average compliance rate of 98.9% for a 2 min evaluation time window. The largest observed ramp of 29.7% s(-1)is contained with the worst case estimate of 34.3% s(-1). This method provides a convenient yet economical approach to worst-case PV ramp rate modeling and is compatible with solar irradiance measured at coarse temporal resolution. [--]
    Subject
    Sensors, Solar irradiance, Solar power plants
     
    Publisher
    American Institute of Physics
    Published in
    Journal of Renewable and Sustainable Energy, 2020, 12, 056302
    Departament
    Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación / Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektriko, Elektroniko eta Telekomunikazio Saila / Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. ISC - Institute of Smart Cities
     
    Publisher version
    https://doi.org/10.1063/5.0021875
    URI
    https://hdl.handle.net/2454/39419
    Sponsorship
    Juan Bosch was financed in part by Project No. PID2019-108953RB-C21, funded by the Ministerio de Ciencia e Innovación and co-financed by the European Regional Development Fund. In addition, Iñigo de la Parra was partially supported by the Spanish State Research Agency (AEI) and FEDER-UE under Grant Nos. DPI2016-80641-R and DPI2016-80642-R.
    Appears in Collections
    • Artículos de revista DIEC - IEKS Aldizkari artikuluak [240]
    • Artículos de revista - Aldizkari artikuluak [4205]
    • Artículos de revista ISC - ISC aldizkari artikuluak [341]
    Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback
     

     

    Browse

    All of Academica-eCommunities & CollectionsAuthorsAuthors By Issue DateTitlesSubjectsBy DegreeThis CollectionAuthorsAuthors By Issue DateTitlesSubjectsBy Degree

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback