On certain subspaces of p for 0 < p ≤ 1 and their applications to conditional quasi-greedy bases in p-Banach spaces
Date
2021Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
ES/1PE/MTM2016-76808-P
Impact
|
10.1007/s00208-020-02069-3
Abstract
We construct for each 0<p≤1 an infinite collection of subspaces of ℓp that extend the example of Lindenstrauss (Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12, 539–542, 1964) of a subspace of ℓ1 with no unconditional basis. The structure of this new class of p-Banach spaces is analyzed and some applications to the general theory of Lp-spaces for 0<p<1 are provided. The introduction of ...
[++]
We construct for each 0<p≤1 an infinite collection of subspaces of ℓp that extend the example of Lindenstrauss (Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12, 539–542, 1964) of a subspace of ℓ1 with no unconditional basis. The structure of this new class of p-Banach spaces is analyzed and some applications to the general theory of Lp-spaces for 0<p<1 are provided. The introduction of these spaces serves the purpose to develop the theory of conditional quasi-greedy bases in p-Banach spaces for p<1. Among the topics we consider are the existence of infinitely many conditional quasi-greedy bases in the spaces ℓp for p≤1 and the careful examination of the conditionality constants of the 'natural basis' of these spaces. [--]
Subject
Subspaces of ℓp,
Banach spaces
Publisher
Springer
Published in
Mathematische Annalen, 2021, 379, 465–502
Departament
Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas /
Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute for Advanced Materials and Mathematics - INAMAT2
Publisher version
Sponsorship
F. Albiac acknowledges the support of the Spanish Ministry for Economy and Competitivity under Grant MTM2016-76808-P as well as the Spanish Ministry for Science and Innovation under Grant PID2019-1077701GB-I00 for Operators, lattices, and structure of Banach spaces. F. Albiac and J. L. Ansorena acknowledge the support of the Spanish Ministry for Science, Innovation, and Universities under Grant PGC2018-095366-B-I00 for Análisis Vectorial, Multilineal y Aproximación. P. Wojtaszczyk was supported by National Science Centre, Poland Grant UMO-2016/21/B/ST1/00241.