Radio wave propagation and WSN deployment in complex utility tunnel environments
Date
2020Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Project Identifier
Impact
|
10.3390/s20236710
Abstract
The significant growth of wireless communications systems in the last years has led to the adoption of a wide range of applications not only for the general public but, also, including utilities and administrative authorities. In this context, the notable expansion of new services for smart cities requires, in some specific cases, the construction of underground tunnels in order to enable the mai ...
[++]
The significant growth of wireless communications systems in the last years has led to the adoption of a wide range of applications not only for the general public but, also, including utilities and administrative authorities. In this context, the notable expansion of new services for smart cities requires, in some specific cases, the construction of underground tunnels in order to enable the maintenance and operation works of utilities, as well as to reduce the visual impact within the city center. One of the main challenges is that, inherently, underground service tunnels lack coverage from exterior wireless communication systems, which can be potentially dangerous for maintenance personnel working within the tunnels. Accordingly, wireless coverage should be deployed within the underground installation in order to guarantee real-time connectivity for safety maintenance, remote surveillance or monitoring operations. In this work, wireless channel characterization for complex urban tunnel environments was analyzed based on the assessment of LoRaWAN and ZigBee technologies operating at 868 MHz. For that purpose, a real urban utility tunnel was modeled and simulated by means of an in-house three-dimensional ray-launching (3D-RL) code. The utility tunnel scenario is a complex and singular environment in terms of radio wave propagation due to the limited dimensions and metallic elements within it, such as service trays, user pathways or handrails, which were considered in the simulations. The simulated 3D-RL algorithm was calibrated and verified with experimental measurements, after which, the simulation and measurement results showed good agreement. Besides, a complete wireless sensor network (WSN) deployment within the tunnels was presented, providing remote cloud data access applications and services, allowing infrastructure security and safety work conditions. The obtained results provided an adequate radio planning approach for the deployment of wireless systems in complex urban utility scenarios, with optimal coverage and enhanced quality of service. [--]
Subject
3D ray launching,
LoRaWAN,
Smart cities,
Tunnel environment,
Wireless sensor networks,
ZigBee
Publisher
MDPI
Published in
Sensors, 2020, 20, 6710
Departament
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute of Smart Cities - ISC /
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza Saila /
Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática /
Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila
Publisher version
Sponsorship
This research was funded in part by the School of Engineering and Sciences at Tecnológico de Monterrey, in part by Project RTI2018-095499-B-C31, funded by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE) and, in part, by the European Union's Horizon 2020 research and Innovation program under grant agreement N◦774094 (Stardust-Holistic and Integrated Urban Model for Smart Cities).