Show simple item record

dc.creatorOtim, Timothyes_ES
dc.creatorBahillo, Alfonsoes_ES
dc.creatorEnrique Díez, Luises_ES
dc.creatorLópez Iturri, Peioes_ES
dc.creatorFalcone Lanas, Francisco Javieres_ES
dc.date.accessioned2021-06-25T12:34:21Z
dc.date.available2021-06-25T12:34:21Z
dc.date.issued2020
dc.identifier.citationT. Otim, A. Bahillo, L. E. Díez, P. López-Iturri and F. Falcone, 'Towards Sub-Meter Level UWB Indoor Localization Using Body Wearable Sensors', in IEEE Access, vol. 8, pp. 178886-178899, 2020, doi: 10.1109/ACCESS.2020.3027669.en
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/2454/40050
dc.description.abstractThanks to its ability to provide sub-meter level positioning accuracy, Ultrawideband (UWB) has found wide use in several wireless body area network (WBAN) applications such as ambient assisted living, remote patient management and preventive care, among others. In spite of the attractiveness of UWB, it is not possible to achieve this level of accuracy when the human body obstructs the wireless channel, leading to a bias in the Time of Flight (TOF) measurements, and hence a detection of position errors of several meters. In this paper, a study of how a sub-meter level of accuracy can be achieved after compensating for body shadowing is presented. Using a Particle Filter (PF), we apply UWB ranging error models that take into consideration the body shadowing effect and evaluate them through simulations and extensive measurements. The results show a significant reduction in the median position error of up to 75 % and 82 % for simulations and experiments, respectively, leading to the achievement of a sub-meter level of localization accuracy.en
dc.description.sponsorshipThis work was supported in part by the Research Training Grants Program of the University of Deusto, in part by the Spanish Ministry of Science and Innovation under the PeaceOfMind project (ref. PID2019-105470RB-C31), and in part by the project RTI2018-095499-B-C31, funded by Ministerio de Ciencia, Innovacion y Universidades, Gobierno de Espana (MCIU/AEI/FEDER,UE).en
dc.format.extent14 p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherIEEEen
dc.relation.ispartofIEEE Access, vol. 8, pp. 178886-178899, 2020en
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBody wearable sensorsen
dc.subjectHuman body shadowingen
dc.subjectLocalizationen
dc.subjectRangingen
dc.subjectUltrawidebanden
dc.subjectTime of flighten
dc.subjectParticle filteren
dc.titleTowards sub-meter level UWB indoor localization using body wearable sensorsen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. ISC - Institute of Smart Citieses_ES
dc.contributor.departmentUniversidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentNafarroako Unibertsitate Publikoa. Ingeniaritza Elektriko, Elektroniko eta Telekomunikazio Sailaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.1109/ACCESS.2020.3027669
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105470RB-C31en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095499-B-C31en
dc.relation.publisherversionhttps://doi.org/10.1109/ACCESS.2020.3027669
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.type.versionVersión publicada / Argitaratu den bertsioaes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This work is licensed under a Creative Commons Attribution 4.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under a Creative Commons Attribution 4.0 License.