• Login
    View Item 
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Escuela Técnica Superior de Ingeniería Industrial, Informática y Telecomunicación - Industria, Informatika eta Telekomunikazio Ingeniaritzako Goi Mailako E.T.
    • Trabajos Fin de Grado ETSIIT - TIIGMET Gradu Amaierako Lanak
    • View Item
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Escuela Técnica Superior de Ingeniería Industrial, Informática y Telecomunicación - Industria, Informatika eta Telekomunikazio Ingeniaritzako Goi Mailako E.T.
    • Trabajos Fin de Grado ETSIIT - TIIGMET Gradu Amaierako Lanak
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Study on the application of different image preprocessing algorithms in image segmentation using deep learning techniques

    Thumbnail
    View/Open
    VelascoRodr.pdf (1.582Mb)
    Date
    2022
    Author
    Velasco Rodríguez, Iñaki 
    Advisor
    Paternain Dallo, Daniel 
    Version
    Acceso abierto / Sarbide irekia
    Type
    Trabajo Fin de Grado/Gradu Amaierako Lana
    Impact
     
     nodoi-noplumx
     
     
     
     
     
    Show full item record
    Abstract
    Semantic segmentation is one of the most important fields of computer vision due to its applicability. In this case, semantic segmentation will be applied to images taken from vehicles knowing the importance of autonomous driving for our future. This project aims to achieve precise and fast results in the field of semantic segmentation with the complication of using less powerful and more afforda ... [++]
    Semantic segmentation is one of the most important fields of computer vision due to its applicability. In this case, semantic segmentation will be applied to images taken from vehicles knowing the importance of autonomous driving for our future. This project aims to achieve precise and fast results in the field of semantic segmentation with the complication of using less powerful and more affordable hardware than the one used nowadays. Deep learning techniques will be used to solve this problem. More concretely, a specific model of convolutional neural network will be trained and in charge of making the predictions, a U-Net. Different parameters of the U-Net will be changed to study how they affect the results. Furthermore, various image sizes, color spaces or reduction methods will be applied to study their impact on the speed and accuracy of the U-Net predictions. Finally, all those results will be compared in order to make a final decision in which is the best combination and which fields impact the most and how. [--]
    Subject
    Deep learning, Computer vision, Semantic segmentation, Convolutional neural network, Reduction
     
    Degree
    Graduado o Graduada en Ingeniería Informática por la Universidad Pública de Navarra (Programa Internacional) / Informatika Ingeniaritzan Graduatua Nafarroako Unibertsitate Publikoan (Nazioarteko Programa)
     
    URI
    https://hdl.handle.net/2454/42460
    Appears in Collections
    • Trabajos Fin de Grado ETSIIT - TIIGMET Gradu Amaierako Lanak [939]
    • Trabajos Fin de Grado - Gradu Amaierako Lanak [3118]
    Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback
     

     

    Browse

    All of Academica-eCommunities & CollectionsAuthorsAuthors By Issue DateTitlesSubjectsBy DegreeThis CollectionAuthorsAuthors By Issue DateTitlesSubjectsBy Degree

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback