• Login
    View Item 
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Estadística, Informática y Matemáticas - Estatistika, Informatika eta Matematika Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Artículos de revista DEIM - EIMS Aldizkari artikuluak
    • View Item
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Estadística, Informática y Matemáticas - Estatistika, Informatika eta Matematika Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Artículos de revista DEIM - EIMS Aldizkari artikuluak
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Uniqueness of unconditional basis of ℓ2⊕T(2)

    Thumbnail
    View/Open
    2022020080-Albiac_UniquenessUnconditional.pdf (325.4Kb)
    Date
    2022
    Author
    Albiac Alesanco, Fernando José Upna Orcid
    Ansorena, José L. 
    Version
    Acceso abierto / Sarbide irekia
    Type
    Artículo / Artikulua
    Version
    Versión aceptada / Onetsi den bertsioa
    Project Identifier
    AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/ 
    AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ 
    Impact
     
     
     
    10.1090/proc/15670
     
     
     
    Show full item record
    Abstract
    We provide a new extension of Pitt’s theorem for compact operators between quasi-Banach lattices which permits to describe unconditional bases of finite direct sums of Banach spaces X1 · · · Xn as direct sums of unconditional bases of their summands. The general splitting principle we obtain yields, in particular, that if each Xi has a unique unconditional basis (up to equivalence and permutation ... [++]
    We provide a new extension of Pitt’s theorem for compact operators between quasi-Banach lattices which permits to describe unconditional bases of finite direct sums of Banach spaces X1 · · · Xn as direct sums of unconditional bases of their summands. The general splitting principle we obtain yields, in particular, that if each Xi has a unique unconditional basis (up to equivalence and permutation), then X1 · · · Xn has a unique unconditional basis too. Among the novel applications of our techniques to the structure of Banach and quasi-Banach spaces we have that the space ℓ2⊕T(2) has a unique unconditional basis. [--]
    Subject
    Banach lattice, Equivalence of bases, Hardy spaces, Quasi-Banach space, Tsirelson space, Unconditional basis, Uniqueness of structure
     
    Publisher
    American Mathematical Society
    Published in
    Proceedings of the American Mathematical Society, 150 (2), 709-717
    Departament
    Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas / Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila
     
    Publisher version
    https://doi.org/10.1090/proc/15670
    URI
    https://hdl.handle.net/2454/42790
    Sponsorship
    F. Albiac acknowledges the support of the Spanish Ministry for Science and Innovation under Grant PID2019-107701GB-I00 for Operators, lattices, and structure of Banach spaces. F. Albiac and J. L. Ansorena acknowledge the support of the Spanish Ministry for Science, Innovation, and Universities under Grant PGC2018- 095366-B-I00 for Análisis Vectorial, Multilineal y Aproximación.
    Appears in Collections
    • Artículos de revista - Aldizkari artikuluak [4730]
    • Artículos de revista DEIM - EIMS Aldizkari artikuluak [264]
    Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback
     

     

    Browse

    All of Academica-eCommunities & CollectionsAuthorsAuthors By Issue DateTitlesSubjectsBy DegreeThis CollectionAuthorsAuthors By Issue DateTitlesSubjectsBy Degree

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback