Uniqueness of unconditional basis of ℓ2⊕T(2)
Date
2022Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/ AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/
Impact
|
10.1090/proc/15670
Abstract
We provide a new extension of Pitt’s theorem for compact operators between quasi-Banach lattices which permits to describe unconditional bases of finite direct sums of Banach spaces X1 · · · Xn as direct sums of unconditional bases of their summands. The general splitting principle we obtain yields, in particular, that if each Xi has a unique unconditional basis (up to equivalence and permutation ...
[++]
We provide a new extension of Pitt’s theorem for compact operators between quasi-Banach lattices which permits to describe unconditional bases of finite direct sums of Banach spaces X1 · · · Xn as direct sums of unconditional bases of their summands. The general splitting principle we obtain yields, in particular, that if each Xi has a unique unconditional basis (up to equivalence and permutation), then X1 · · · Xn has a unique unconditional basis too. Among the novel applications of our techniques to the structure of Banach and quasi-Banach spaces we have that the space ℓ2⊕T(2) has a unique unconditional basis. [--]
Subject
Banach lattice,
Equivalence of bases,
Hardy spaces,
Quasi-Banach space,
Tsirelson space,
Unconditional basis,
Uniqueness of structure
Publisher
American Mathematical Society
Published in
Proceedings of the American Mathematical Society, 150 (2), 709-717
Departament
Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas /
Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila
Publisher version
Sponsorship
F. Albiac acknowledges the support of the Spanish Ministry for Science and Innovation under Grant PID2019-107701GB-I00 for Operators, lattices, and structure of Banach spaces. F. Albiac and J. L. Ansorena acknowledge the support of the Spanish Ministry for Science, Innovation, and Universities under Grant PGC2018- 095366-B-I00 for Análisis Vectorial, Multilineal y Aproximación.