• Login
    View Item 
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Estadística, Informática y Matemáticas - Estatistika, Informatika eta Matematika Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Artículos de revista DEIM - EIMS Aldizkari artikuluak
    • View Item
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Estadística, Informática y Matemáticas - Estatistika, Informatika eta Matematika Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Artículos de revista DEIM - EIMS Aldizkari artikuluak
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Projections and unconditional bases in direct sums of ℓp SPACES, 0<p≤∞

    Thumbnail
    View/Open
    2022020117-Albiac_ProjectionsUnconditional.pdf (366.3Kb)
    Date
    2021
    Author
    Albiac Alesanco, Fernando José Upna Orcid
    Ansorena, José L. 
    Version
    Acceso abierto / Sarbide irekia
    Type
    Artículo / Artikulua
    Version
    Versión aceptada / Onetsi den bertsioa
    Project Identifier
    AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ openaire
    AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/ openaire
    Impact
     
     
     
    10.1002/mana.201900537
     
     
     
    Show full item record
    Abstract
    We show that every unconditional basis in a finite direct sum ⊕p∈Aℓp , with A ⊂ (0,∞], splits into unconditional bases of each summand. This settles a 40 years old question raised in 'A. Ortyński, Unconditional bases in ℓp ⊕ ℓq, 0< p < q <1, Math. Nachr. 103 (1981), 109–116'. As an application we obtain that for any A ⊂ (0,1] finite, the spaces Z = ⊕p∈A ℓp,Z ⊕ ℓ2, and Z ⊕ c0 have a unique uncondi ... [++]
    We show that every unconditional basis in a finite direct sum ⊕p∈Aℓp , with A ⊂ (0,∞], splits into unconditional bases of each summand. This settles a 40 years old question raised in 'A. Ortyński, Unconditional bases in ℓp ⊕ ℓq, 0< p < q <1, Math. Nachr. 103 (1981), 109–116'. As an application we obtain that for any A ⊂ (0,1] finite, the spaces Z = ⊕p∈A ℓp,Z ⊕ ℓ2, and Z ⊕ c0 have a unique unconditional basis up to permutation. [--]
    Subject
    Unconditional basis, Quasi-Banach space, L-p-spaces
     
    Publisher
    Wiley
    Published in
    Mathematische Nachrichten, 294 (11), pp. 2052-2062, 2021
    Departament
    Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas / Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila
     
    Publisher version
    https://doi.org/10.1002/mana.201900537
    URI
    https://hdl.handle.net/2454/42791
    Sponsorship
    Both authors were supported by the Spanish Ministry for Science, Innovation, and Universities, Grant PGC2018-095366-B-I00 for ‘Análisis Vectorial, Multilineal y Approximación’. The first-named author also acknowledges the support from the Spanish Ministry for Science and Innovation, Grant PID2019-107701GB-I00 for ‘Operators, Lattices, and Structure of Banach spaces.
    Appears in Collections
    • Artículos de revista - Aldizkari artikuluak [4752]
    • Artículos de revista DEIM - EIMS Aldizkari artikuluak [267]
    Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback
     

     

    Browse

    All of Academica-eCommunities & CollectionsAuthorsAuthors By Issue DateTitlesSubjectsBy DegreeThis CollectionAuthorsAuthors By Issue DateTitlesSubjectsBy Degree

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback