New recurrence relations for several classical families of polynomials
Date
2021Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/
Impact
|
10.1080/10236198.2021.1999432
Abstract
In this paper, we derive new recurrence relations for the following families of polynomials: nörlund polynomials, generalized Bernoulli polynomials, generalized Euler polynomials, Bernoulli polynomials of the second kind, Buchholz polynomials, generalized Bessel polynomials and generalized Apostol–Euler polynomials. The recurrence relations are derived from a differential equation of first order ...
[++]
In this paper, we derive new recurrence relations for the following families of polynomials: nörlund polynomials, generalized Bernoulli polynomials, generalized Euler polynomials, Bernoulli polynomials of the second kind, Buchholz polynomials, generalized Bessel polynomials and generalized Apostol–Euler polynomials. The recurrence relations are derived from a differential equation of first order and a Cauchy integral representation obtained from the generating function of these polynomials. [--]
Subject
Classical polynomials,
Generating function,
Recurrence relations,
Cauchy integral representation
Publisher
Taylor and Francis
Published in
Journal of Difference Equations and Applications, 27 (10), pp. 1512-1523, 2021
Departament
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute for Advanced Materials - INAMAT /
Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas /
Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila
Publisher version
Sponsorship
This research was supported by the Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación (MTM2017-83490-P) and the Universidad Pública de Navarra.