• Login
    View Item 
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ciencias de la Salud - Osasun Zientziak Saila
    • Artículos de revista DCS - OZS Aldizkari artikuluak
    • View Item
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ciencias de la Salud - Osasun Zientziak Saila
    • Artículos de revista DCS - OZS Aldizkari artikuluak
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models

    Thumbnail
    View/Open
    2022020148-Zumeta_PredictionSports.pdf (288.4Kb)
    Date
    2021
    Author
    Zumeta-Olaskoaga, Lore 
    Weigert, Maximilian 
    Larruskain, Jon 
    Bikandi Latxaga, Eder 
    Setuain Chourraut, Igor Upna
    Lekue, Josean 
    Küchenhoff, Helmut 
    Lee, Dae-Jin 
    Version
    Acceso abierto / Sarbide irekia
    Type
    Artículo / Artikulua
    Version
    Versión aceptada / Onetsi den bertsioa
    Project Identifier
    AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115882RB-I00/ES/ openaire
    Impact
     
     
     
    10.1007/s10182-021-00428-2
     
     
    Show full item record
    Abstract
    Data-based methods and statistical models are given special attention to the studyof sports injuries to gain in-depth understanding of its risk factors and mechanisms. The objective of this work is to evaluate the use of shared frailty Cox models forthe prediction of occurring sports injuries, and to compare their performance withdifferent sets of variables selected by several regularized variabl ... [++]
    Data-based methods and statistical models are given special attention to the studyof sports injuries to gain in-depth understanding of its risk factors and mechanisms. The objective of this work is to evaluate the use of shared frailty Cox models forthe prediction of occurring sports injuries, and to compare their performance withdifferent sets of variables selected by several regularized variable selection approaches. The study is motivated by specific characteristics commonly found for sports injury data, that usually include reduced sample size and even fewer number of injuries,coupled with a large number of potentially influential variables. Hence, we conduct asimulation study to address these statistical challenges and to explore regularized Cox model strategies together with shared frailty models in different controlled situations. We show that predictive performance greatly improves as more player observations areavailable. Methods that result in sparse models and favour interpretability, e.g. best subset selection and boosting, are preferred when the sample size is small. We include a real case study of injuries of female football players of a Spanish football club. [--]
    Subject
    Shared frailty models, Regularized Cox methods, Sports injury prevention, Survival analysis
     
    Publisher
    Springer
    Published in
    AStA Advances in Statistical Analysis, 2021
    Departament
    Universidad Pública de Navarra. Departamento de Ciencias de la Salud / Nafarroako Unibertsitate Publikoa. Osasun Zientziak Saila
     
    Publisher version
    https://doi.org/10.1007/s10182-021-00428-2
    URI
    https://hdl.handle.net/2454/42800
    Sponsorship
    This research was supported by the Basque Government through the BERC Programme 2018–2021 by the Spanish Ministry of Science, Innovation and Universities MICINN and FEDER: BCAM Severo Ochoa excellence accreditation SEV-2017-0718, and project PID2020-115882RB-I00 funded by AEI/FEDER, UE and acronym ‘S3M1P4R’ and by the German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A.
    Appears in Collections
    • Artículos de revista DCS - OZS Aldizkari artikuluak [656]
    • Artículos de revista - Aldizkari artikuluak [4926]
    Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback
     

     

    Browse

    All of Academica-eCommunities & CollectionsAuthorsAuthors By Issue DateTitlesSubjectsBy DegreeThis CollectionAuthorsAuthors By Issue DateTitlesSubjectsBy Degree

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback