On the calculation of the STC power of PV generators by using typical monitoring system data

View/ Open
Date
2017Author
Version
Acceso abierto / Sarbide irekia
Type
Contribución a congreso / Biltzarrerako ekarpena
Impact
|
nodoi-noplumx
|
Abstract
The properly in-field characterization of the power at Standard Test Conditions, PSTC, of PV generators is becoming increasingly important in order to evaluate their performance and its evolution in time. Within the state of art, the PSTC characterization procedures of PV arrays are mainly based on I-V curve measurements or PDC measurements performed by precision wattmeters. Those characterizatio ...
[++]
The properly in-field characterization of the power at Standard Test Conditions, PSTC, of PV generators is becoming increasingly important in order to evaluate their performance and its evolution in time. Within the state of art, the PSTC characterization procedures of PV arrays are mainly based on I-V curve measurements or PDC measurements performed by precision wattmeters. Those characterizations are usually carried out during discrete measurement campaigns, which does not allow a continuous tracking of the PSTC evolution. In this paper a new PSTC characterization procedure is proposed which is based on the DC power measurements performed by the own PV inverters connected to the PV arrays. This procedure enables an automatic and continuous calculation of the PSTC, which allows to observe its evolution and to detect possible anomalous trends, premature degradations, etc. The procedure has been validated in several PV generators of the large-scale Amareleja PV Plant (45.6 MWp). As showed in this paper, by using several day data and applying the adequate filters, a high accuracy in the PSTC calculation can be achieved, a similar accuracy to that obtained by using precision wattmeter measurements. [--]
Subject
STC power,
PV arrays characterization,
PV power,
PV performance
Description
Póster presentado a la 33rd European Photovoltaic Solar Energy Conference and Exhibition. Amsterdam (Países Bajos), 2017.
Departament
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute of Smart Cities - ISC /
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica y Electrónica /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektrikoa eta Elektronikoa Saila
Sponsorship
This work has been partially financed by the Seventh Framework Programme of the European Commission with the project PVCROPS (Photovoltaic Cost Reduction, Reliability, Operational Performance, Prediction and Simulation – Grant Agreement no: 308468) and by the Spanish Ministry of Economy and Competitiveness under Grant DPI2013-42853-R.