dc.creator | Albiac Alesanco, Fernando José | es_ES |
dc.creator | Ansorena, José L. | es_ES |
dc.creator | Cúth, Marek | es_ES |
dc.creator | Doucha, Michal | es_ES |
dc.date.accessioned | 2022-08-31T10:47:50Z | |
dc.date.available | 2022-08-31T10:47:50Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Albiac, F.; Ansorena, J. L.; Cuth, M.; Doucha, M.. (2021). Lipschitz algebras and Lipschitz-Free spaces over unbounded metric spaces. International Mathematics Research Notices . | en |
dc.identifier.issn | 1073-7928 | |
dc.identifier.uri | https://hdl.handle.net/2454/43908 | |
dc.description.abstract | We investigate a way to turn an arbitrary (usually, unbounded) metric space M into a bounded metric space B in such a way that the corresponding Lipschitz-free spaces F(M) and F(B) are isomorphic. The construction we provide is functorial in a weak sense and has the advantage of being explicit. Apart from its intrinsic theoretical interest, it has many applications in that it allows to transfer many arguments valid for Lipschitz-free spaces over bounded spaces to Lipschitz-free spaces over unbounded spaces. Furthermore, we show that with a slightly modified pointwise multiplication, the space Lip(0)(M) of scalar-valued Lipschitz functions vanishing at zero over any (unbounded) pointed metric space is a Banach algebra with its canonical Lipschitz norm. | en |
dc.description.sponsorship | This work was supported by the Spanish Ministry for Science and Innovation [PID2019-107701GBI00 for Operators, lattices, and structure of Banach spaces to F.A.]; the Spanish Ministry for Science, Innovation, and Universities [PGC2018-095366-B-I00 for Analisis Vectorial, Multilineal, y Aproximacion to F.A. and J.L.A.]; the Charles University Research program [UNCE/SCI/023 to M.C.]; and the GAC. R project [EXPRO 20-31529X and RVO: 67985840 to M.D.]. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | eng | en |
dc.publisher | Oxford University Press | en |
dc.relation.ispartof | International Mathematics Research Notices, 2021; rnab193 | en |
dc.rights | © The Author(s) 2021. Published by Oxford University Press. All rights reserved. | esen |
dc.subject | Lipschitz-free spaces | en |
dc.subject | Lipschitz algebras | en |
dc.subject | Unbounded spaces | en |
dc.title | Lipschitz algebras and Lipschitz-Free spaces over unbounded metric spaces | en |
dc.type | Artículo / Artikulua | es |
dc.type | info:eu-repo/semantics/article | en |
dc.date.updated | 2022-08-31T10:41:16Z | |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.contributor.department | Institute for Advanced Materials and Mathematics - INAMAT2 | es_ES |
dc.rights.accessRights | Acceso abierto / Sarbide irekia | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en |
dc.identifier.doi | 10.1093/imrn/rnab193 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/ | en |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ | en |
dc.relation.publisherversion | https://doi.org/10.1093/imrn/rnab193 | en |
dc.type.version | Versión aceptada / Onetsi den bertsioa | es |
dc.type.version | info:eu-repo/semantics/acceptedVersion | en |