Show simple item record

dc.creatorAlbiac Alesanco, Fernando Josées_ES
dc.creatorAnsorena, José L.es_ES
dc.creatorCúth, Marekes_ES
dc.creatorDoucha, Michales_ES
dc.date.accessioned2022-08-31T10:47:50Z
dc.date.available2022-08-31T10:47:50Z
dc.date.issued2021
dc.identifier.citationAlbiac, F.; Ansorena, J. L.; Cuth, M.; Doucha, M.. (2021). Lipschitz algebras and Lipschitz-Free spaces over unbounded metric spaces. International Mathematics Research Notices .en
dc.identifier.issn1073-7928
dc.identifier.urihttps://hdl.handle.net/2454/43908
dc.description.abstractWe investigate a way to turn an arbitrary (usually, unbounded) metric space M into a bounded metric space B in such a way that the corresponding Lipschitz-free spaces F(M) and F(B) are isomorphic. The construction we provide is functorial in a weak sense and has the advantage of being explicit. Apart from its intrinsic theoretical interest, it has many applications in that it allows to transfer many arguments valid for Lipschitz-free spaces over bounded spaces to Lipschitz-free spaces over unbounded spaces. Furthermore, we show that with a slightly modified pointwise multiplication, the space Lip(0)(M) of scalar-valued Lipschitz functions vanishing at zero over any (unbounded) pointed metric space is a Banach algebra with its canonical Lipschitz norm.en
dc.description.sponsorshipThis work was supported by the Spanish Ministry for Science and Innovation [PID2019-107701GBI00 for Operators, lattices, and structure of Banach spaces to F.A.]; the Spanish Ministry for Science, Innovation, and Universities [PGC2018-095366-B-I00 for Analisis Vectorial, Multilineal, y Aproximacion to F.A. and J.L.A.]; the Charles University Research program [UNCE/SCI/023 to M.C.]; and the GAC. R project [EXPRO 20-31529X and RVO: 67985840 to M.D.].en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherOxford University Pressen
dc.relation.ispartofInternational Mathematics Research Notices, 2021; rnab193en
dc.rights© The Author(s) 2021. Published by Oxford University Press. All rights reserved.esen
dc.subjectLipschitz-free spacesen
dc.subjectLipschitz algebrasen
dc.subjectUnbounded spacesen
dc.titleLipschitz algebras and Lipschitz-Free spaces over unbounded metric spacesen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.date.updated2022-08-31T10:41:16Z
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2es_ES
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.doi10.1093/imrn/rnab193
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/en
dc.relation.publisherversionhttps://doi.org/10.1093/imrn/rnab193en
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt