Show simple item record

dc.creatorGarcía de Vicuña Bilbao, Danieles_ES
dc.creatorMallor Giménez, Fermínes_ES
dc.identifier.citationGarcia-Vicuna, D., & Mallor, F. (2021). Improving input parameter estimation in online pandemic simulation. 2021 Winter Simulation Conference (WSC), 1-12.
dc.description.abstractSimulation models are suitable tools to represent the complexity and randomness of hospital systems. To be used as forecasting tools during pandemic waves, it is necessary an accurate estimation, by using real-time data, of all input parameters that define the patient pathway and length of stay in the hospital. We propose an estimation method based on an expectation-maximization algorithm that uses data from all patients admitted to the hospital to date. By simulating different pandemic waves, the performance of this method is compared with other two statistical estimators that use only complete data. Results collected to measure the accuracy in the parameters estimation and its influence in the forecasting of necessary resources to provide healthcare to pandemic patients show the better performance of the new estimation method. We also propose a new parameterization of the Gompertz growth model that eases the creation of patient arrival scenarios in the pandemic simulation. © 2021 IEEE.en
dc.description.sponsorshipThis paper was supported by the COVID grant of Navarre's Government 0011-3597-2020-000003 and the grant PID2020-114031RB-I00 (AEI, FEDER EU).en
dc.relation.ispartof2021 Winter Simulation Conference (WSC), 2021, pp. 1-12en
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.en
dc.subjectData handlingen
dc.subjectExpectation-maximisation algorithmen
dc.subjectHealth careen
dc.subjectParameter estimationen
dc.titleImproving input parameter estimation in online pandemic simulationen
dc.typeContribución a congreso / Biltzarrerako ekarpenaes
dc.contributor.departmentInstitute of Smart Cities - ISCes_ES
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.rights.accessRightsAcceso Embargadoes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114031RB-I00/ES/en
dc.type.versionVersión publicada / Argitaratu den bertsioaes

Files in this item


This item appears in the following Collection(s)

Show simple item record

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt