• Login
    View Item 
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ingeniería - Ingeniaritza Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Artículos de revista DING - INGS Aldizkari artikuluak
    • View Item
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ingeniería - Ingeniaritza Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Artículos de revista DING - INGS Aldizkari artikuluak
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of near-infrared hyperspectral imaging for the assessment of potato processing aptitude

    Thumbnail
    View/Open
    Lopez_EvaluationNearinfrared_1667470208716_42020.pdf (3.873Mb)
    Date
    2022
    Author
    López Maestresalas, Ainara Upna Orcid
    López Molina, Carlos Upna Orcid
    Oliva Lobo, Gil Alfonso 
    Jarén Ceballos, Carmen Upna Orcid
    Ruiz de Galarreta, José Ignacio Upna
    Peraza Alemán, Carlos Miguel 
    Arazuri Garín, Silvia Upna Orcid
    Version
    Acceso abierto / Sarbide irekia
    Type
    Artículo / Artikulua
    Version
    Versión publicada / Argitaratu den bertsioa
    Project Identifier
    AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109790RR-C22/ES/ 
    Impact
     
     
     
    10.3389/fnut.2022.999877
     
     
     
    Show full item record
    Abstract
    The potato (Solanum tuberosum L.) is the world's fifth most important staple food with high socioeconomic relevance. Several potato cultivars obtained by selection and crossbreeding are currently on the market. This diversity causes tubers to exhibit different behaviors depending on the processing to which they are subjected. Therefore, it is interesting to identify cultivars with specific charac ... [++]
    The potato (Solanum tuberosum L.) is the world's fifth most important staple food with high socioeconomic relevance. Several potato cultivars obtained by selection and crossbreeding are currently on the market. This diversity causes tubers to exhibit different behaviors depending on the processing to which they are subjected. Therefore, it is interesting to identify cultivars with specific characteristics that best suit consumer preferences. In this work, we present a method to classify potatoes according to their cooking or frying as crisps aptitude using NIR hyperspectral imaging (HIS) combined with a Partial Least Squares Discriminant Analysis (PLS-DA). Two classification approaches were used in this study. First, a classification model using the mean spectra of a dataset composed of 80 tubers belonging to 10 different cultivars. Then, a pixel-wise classification using all the pixels of each sample of a small subset of samples comprised of 30 tubers. Hyperspectral images were acquired using fresh-cut potato slices as sample material placed on a mobile platform of a hyperspectral system in the NIR range from 900 to 1,700 nm. After image processing, PLS-DA models were built using different pre-processing combinations. Excellent accuracy rates were obtained for the models developed using the mean spectra of all samples with 90% of tubers correctly classified in the external dataset. Pixel-wise classification models achieved lower accuracy rates between 66.62 and 71.97% in the external validation datasets. Moreover, a forward interval PLS (iPLS) method was used to build pixel-wise PLS-DA models reaching accuracies above 80 and 71% in cross-validation and external validation datasets, respectively. Best classification result was obtained using a subset of 100 wavelengths (20 intervals) with 71.86% of pixels correctly classified in the validation dataset. Classification maps were generated showing that false negative pixels were mainly located at the edges of the fresh-cut slices while false positive were principally distributed at the central pith, which has singular characteristics. [--]
    Subject
    Potato, NIR hyperspectral imaging (HIS), Partial Least Squares Discriminant Analysis (PLS-DA)
     
    Publisher
    Frontiers Media
    Published in
    Frontiers In Nutrition 9:999877
    Departament
    Universidad Pública de Navarra. Departamento de Ingeniería / Nafarroako Unibertsitate Publikoa. Ingeniaritza Saila / Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas / Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematikak Saila / Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. ISFOOD - Institute for Innovation and Sustainable Development in Food Chain
     
    Publisher version
    https://doi.org/10.3389/fnut.2022.999877
    URI
    https://hdl.handle.net/2454/44267
    Sponsorship
    This work was funded by the Ministerio de Ciencia e Innovación (Spanish Ministry of Science and Innovation) (project PID2019-109790RR-C22).
    Appears in Collections
    • Artículos de revista DING - INGS Aldizkari artikuluak [131]
    • Artículos de revista ISFOOD - ISFOOD aldizkari artikuluak [151]
    • Artículos de revista - Aldizkari artikuluak [4594]
    • Artículos de revista DEIM - EIMS Aldizkari artikuluak [245]
    Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback
     

     

    Browse

    All of Academica-eCommunities & CollectionsAuthorsAuthors By Issue DateTitlesSubjectsBy DegreeThis CollectionAuthorsAuthors By Issue DateTitlesSubjectsBy Degree

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback