Thermal expansion behaviour of Invar 36 alloy parts fabricated by wire-arc additive manufacturing
Date
2022Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Impact
|
10.1016/j.jmrt.2022.06.114
Abstract
Invar 36 alloy is of high interest in various industrial sectors, due to its reduced thermal expansion properties. This study aims to validate Wire-Arc Additive Manufacturing (WAAM) technology as a valid method for manufacturing aerospace tooling in Invar 36. The main novelty and the objective of this work is to study the properties of Invar deposited by WAAM technology and to provide guidelines ...
[++]
Invar 36 alloy is of high interest in various industrial sectors, due to its reduced thermal expansion properties. This study aims to validate Wire-Arc Additive Manufacturing (WAAM) technology as a valid method for manufacturing aerospace tooling in Invar 36. The main novelty and the objective of this work is to study the properties of Invar deposited by WAAM technology and to provide guidelines for the manufacture of parts using this technology. To do so, the thermal expansion behaviour of Invar specimens manufactured using Gas Metal Arc Welding (GMAW)-based WAAM technology and Plasma Arc Welding (PAW)-based WAAM technology is analyzed for subsequent comparison with the values obtained from the laminated Invar sample used as the reference specimen. A wall is manufactured with each technology, for comparative purposes, from which specimens were extracted for the dilatometry test and metallographic analysis. The results of these analyses show the advantages of GMAW technology for the manufacture of Invar alloy parts, as it presents the same thermal expansion behaviour as the laminated reference material with less presence of precipitates and no macrostructural failures such as pores, cracks and lacks of fusion. Furthermore, to conclude, an aeronautical tooling that has been manufactured within this work demonstrated the potential of this technology to manu-facture specialized aeronautical parts. [--]
Subject
Additive manufacturing,
WAAM,
Invar,
Dilatometry,
GMAW,
PAW
Publisher
Elsevier
Published in
Journal of Materials Research and Technology 2022 ; 19 : 3634-3645
Departament
Universidad Pública de Navarra. Departamento de Ingeniería /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Saila
Publisher version
Sponsorship
The authors acknowledge the Basque Government for financing the ADDHOC project, HAZITEK 2021 program (ZL-2021/00989) and EKOHEGAZ ELKARTEK program (kk-2021/00092) .