Life cycle assessment of power-to-methane systems with CO2 supplied by the chemical looping combustion of biomass

Date
2022Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Project Identifier
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121190-I00 AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113131RB-I00/ES/ AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096294-B-C31/ES/
Impact
|
10.1016/j.enconman.2022.115866
Abstract
Power-to-methane (PtM) systems may allow fluctuations in the renewable energy supply to be smoothed out by storing surplus energy in the form of methane. These systems work by combining the hydrogen produced by electrolysis with carbon dioxide from different sources to produce methane via the Sabatier reaction. The present work studies PtM systems based on the CO2 supplied by the chemical looping ...
[++]
Power-to-methane (PtM) systems may allow fluctuations in the renewable energy supply to be smoothed out by storing surplus energy in the form of methane. These systems work by combining the hydrogen produced by electrolysis with carbon dioxide from different sources to produce methane via the Sabatier reaction. The present work studies PtM systems based on the CO2 supplied by the chemical looping combustion (CLC) of biomass (PtM-bioCLC). Life- cycle- assessment (LCA) was performed on PtM-bioCLC systems to evaluate their environmental impact with respect to a specific reference case. The proposed configurations have the potential to reduce the value of the global warming potential (GWP) climate change indicator to the lowest values reported in the literature to date. Moreover, the possibility of effectively removing CO2 from the atmosphere through the concept of CO2 negative emissions was also assessed. In addition to GWP, as many as 16 LCA indicators were also evaluated and their values for the studied PtM-bioCLC systems were found to be similar to those of the reference case considered or even significantly lower in such categories as resource use-depletion, ozone depletion, human health, acidification potential and eutrophication. The results obtained highlight the potential of these newly proposed PtM schemes. [--]
Subject
Biomass,
Carbon capture,
Chemical looping,
CLOU,
iG-CLC,
Power-to-methane
Publisher
Elsevier
Published in
Energy Conversion and Management 267 (2022) 115866
Departament
Universidad Pública de Navarra. Departamento de Ciencias /
Nafarroako Unibertsitate Publikoa. Zientziak Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute for Advanced Materials and Mathematics - INAMAT2
Publisher version
Sponsorship
This work was supported by Grant PDC2021-121190-I00 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR and also by Grant PID2020-113131RB-I00 funded by MICIN/AEI/10.13039/501100011033. A.N. and L.M.G. gratefully acknowledge Grant RTI2018-096294-B-C31 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”.