Publication:
Toroidal inductor design in multilevel DC-DC electric vehicle battery charger including high-frequency effects

Consultable a partir de

Date

2022

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110956RB-I00/ES/

Abstract

Inductor filters, such as the ones implemented in DC-DC buck-boost converters for electric vehicle chargers, have a major impact on the converter weight, volume and cost. Thus, their design is key in order to obtain an optimal design of the whole converter. This paper proposes a design methodology for powder core toroidal inductors, which is based on a holistic approach of the design of the inductor, where losses due to highfrequency effects are computed by means of specific loss model for toroidal windings, and saturation, geometrical and thermal constraints are considered. The convenience of the design tool is shown through an analysis over a wide variation of parameters, including converter topology, parallelization, switching frequency and inductance. The analysis demonstrates the relevance of high-frequency effects on the inductor design, so certain misconceptions can be avoided, such as that the inductor volume monotonically decreases when the inductance value is decreased or that paralleling inductors always results in more compact designs. A design example is presented for a 15-kW, three-level electric vehicle battery charger. The algorithm is used to obtain an optimal design of the converter, including the inductors and SiC MOSFET devices. Finally, an easy method to obtain a commercial inductor design from the theoretical one provided by the algorithm is presented.

Keywords

Electric vehicle, High-frequency effects, Multilevel dc-dc converter, Optimization algorithm, Toroidal inductor, Winding loss

Department

Ingeniería Eléctrica, Electrónica y de Comunicación / Institute of Smart Cities - ISC / Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work was supported by the Spanish State Research Agency (AEI) under grant PID2019-110956RB-100 and by the Public University of Navarre (UPNA) under a PhD scholarship.

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.