Design and characterization of terahertz CORPS beam forming networks
Date
2023Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Project Identifier
Impact
|
10.1007/s10762-023-00916-3
Abstract
This work reviews the design and applicability of beam-forming networks based on Coherently Radiating Periodic Structures (CORPS-BFN) at Terahertz (THz) frequency bands. These versatile networks offer two operation modes: a continuous beam steering – feeding an antenna array with a linearly progressive phase distribution – using a reduced number of phase controls; or a multi-beam operation, gener ...
[++]
This work reviews the design and applicability of beam-forming networks based on Coherently Radiating Periodic Structures (CORPS-BFN) at Terahertz (THz) frequency bands. These versatile networks offer two operation modes: a continuous beam steering – feeding an antenna array with a linearly progressive phase distribution – using a reduced number of phase controls; or a multi-beam operation, generating independent, overlapped beams. These networks are built upon the concatenation of power combiners/dividers (PCDs) with isolated outputs. The isolation is provided by monolithically integrated resistors, implemented with Ti/TiO
thin films for the first time. In this work, a planar prototype of a
(inputs/outputs) microstrip CORPS-BFN for operation in the WR3.4/WM-864 band (220–330 GHz) on a thin 50
m Indium Phosphide (InP) substrate is designed, fabricated, and characterized. The measured S-parameters show a reflection coefficient better than -15 dB and an insertion loss between 1.6 and 3.2 dB in the whole band. In addition, an isolation better than 20 dB between the input ports has been measured. An overall remarkable agreement is observed between the measurements and the simulations. Last, the applications, scalability and efficiency of this type of networks at the targeted band are discussed in detail. [--]
Subject
Beam forming networks,
CORPS,
Indium phosphide,
Monolithic integration,
Terahertz,
Thin-film
Publisher
Springer
Published in
Journal of Infrared, Millimeter, and Terahertz Waves, 44 (2023)
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute of Smart Cities - ISC
Publisher version
Sponsorship
This research was funded partially by the FPU Program from the Spanish Ministry of Science and Innovation, grant No. FPU18/00013, and project PID2019-109984RB-C43 (FRONT-MiliRAD); by the Deutsche Forschungs-Gemeinschaft (DFG, German Research Foundation) under Project 287022738-CRC/TRR 196 MARIE (Projects C02, C05, C06, C07 and S03); by BMBF (smartBeam, 6GEM grant No. EFRE-0400215, grant No.16KISK017 and grant No.16KISK039) and by the NRW/EFRE Terahertz-Integrationszentrum (Open6GHub and THz.NRW). Open Access funding provided by Universidad Pública de Navarra.