Existence of almost greedy bases in mixed-norm sequence and matrix spaces, including besov spaces

View/ Open
Date
2023Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Project Identifier
Impact
|
10.1007/s00365-023-09662-0
Abstract
We prove that the sequence spaces lp ⊕ lq and the spaces of infinite matrices lp(lq ), lq l(p) and ( ∞ n=1 n lp)lq , which are isomorphic to certain Besov spaces, have an almost greedy basis whenever 0 < p < 1 < q < ∞. More precisely, we custom-build almost greedy bases in such a way that the Lebesgue parameters grow in a prescribed manner. Our arguments critically depend on the extension of the ...
[++]
We prove that the sequence spaces lp ⊕ lq and the spaces of infinite matrices lp(lq ), lq l(p) and ( ∞ n=1 n lp)lq , which are isomorphic to certain Besov spaces, have an almost greedy basis whenever 0 < p < 1 < q < ∞. More precisely, we custom-build almost greedy bases in such a way that the Lebesgue parameters grow in a prescribed manner. Our arguments critically depend on the extension of the Dilworth–Kalton– Kutzarova method from Dilworth et al. (Stud Math 159(1):67–101, 2003), which was originally designed for constructing almost greedy bases in Banach spaces, to make it valid for direct sums of mixed-normed spaces with nonlocally convex components. Additionally, we prove that the fundamental functions of all almost greedy bases of these spaces grow as (ml/q )∞ m=l. [--]
Subject
Almost greedy basis,
Conditional basis,
Quasi-greedy basis,
Subsymmetric basis,
Thresholding greedy algorithm,
lp-Spaces
Publisher
Springer
Published in
Constructive Approximation (2023), 1-31
Departament
Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas /
Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute for Advanced Materials and Mathematics - INAMAT2
Publisher version
Sponsorship
Open Access funding provided by Universidad Pública de Navarra. F. Albiac acknowledges the support of the Spanish Ministry for Science and Innovation under Grant PID2019-107701GB-I00 for Operators, lattices, and structure of Banach spaces.