Publication:
Coordinated cyclic-di-GMP repression of salmonella motility through YcgR and cellulose

Consultable a partir de

Date

2013

Director

Publisher

American Society for Microbiology
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

Abstract

Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition.

Description

Incluye 1 fichero de datos

Keywords

Cyclic di-GMP, Salmonella, Cellulose, YcgR, Motility, Biofilms

Department

IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2013, American Society for Microbiology. All Rights Reserved.


© del material complementario: los autores

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.