Publication:
Wavelength and phase detection based SMS fiber sensors optimized with etching and nanodeposition

Consultable a partir de

Date

2016

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

ES/1PE/TEC2016-78047-R

Abstract

The development of an optical fiber refractometer by hydrogen fluoride etching and sputtering deposition of a thin-film of indium tin oxide on a single-mode-multimode-single-mode fiber structure has been analyzed with the aim of improving the sensitivity to the changes of the refractive index (RI) of the external medium. The device is sensitive to the RI changes of the surrounding medium, which can be monitored by tracking the spectral changes of an attenuation band or with a fast Fourier transform (FFT) analysis. By using an optical spectrum analyzer combined with a simple FFT measurement technique, the simultaneous real time monitoring is achieved. The results show that the sensitivity depends on the thin-film thickness. A maximum of 1442 nm/RIU (refractive index unit) in the 1.32–1.35RIUrange has been attained. In addition, a theoretical analysis has been performed, where simu lationsmatched with the experimental results. As a practical appli cation of the developed optical fiber structure, a °Brix (°Bx) sensor has been implemented with a sensitivity of 2.13 nm/°Bx and 0.25 rad/°Bx respectively for wavelength and phase shift detection.

Description

Keywords

Etching, Optical fiber sensor, Refractive index, Single-mode–multimode–single-mode (SMS), Thin-films

Department

Ingeniería Eléctrica y Electrónica / Ingeniaritza Elektrikoa eta Elektronikoa

Faculty/School

Degree

Doctorate program

item.page.cita

Y. Cardona-Maya, I. Del Villar, A. B. Socorro, J. M. Corres, I. R. Matias and J. F. Botero-Cadavid, "Wavelength and Phase Detection Based SMS Fiber Sensors Optimized With Etching and Nanodeposition," in Journal of Lightwave Technology, vol. 35, no. 17, pp. 3743-3749, Sept.1, 1 2017. doi: 10.1109/JLT.2017.2719923

item.page.rights

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.