Mostrar el registro sencillo del ítem

dc.creatorAranguren Garacochea, Patriciaes_ES
dc.creatorAstrain Ulibarrena, Davides_ES
dc.creatorMartínez Echeverri, Álvaroes_ES
dc.date.accessioned2016-04-11T14:13:18Z
dc.date.available2016-04-11T14:13:18Z
dc.date.issued2014
dc.identifier.issn0361-5235 (Print)
dc.identifier.issn1543-186X (Electronic)
dc.identifier.urihttps://hdl.handle.net/2454/20429
dc.descriptionThe final publication is available at Springer via http://dx.doi.org/10.1007/s11664-014-3057-xen
dc.description.abstractThe reduction of the thermal resistances of the heat exchangers of a thermoelectric generation system (TEG), leads to a significant increase in the TEG efficiency. For the cold side of a thermoelectric module (TEM), a wide range of heat exchangers has been studied, form simple finned dissipators to more complex water (water-glycol) heat exchangers. As Nusselt numbers are much higher in water heat exchangers than in conventional air finned dissipators, convective thermal resistances are better. However, to conclude which heat exchanger leads to higher efficiencies, it is necessary to include the whole system involved in the heat dissipation, that is, TEM-to-water heat exchanger, water-to-ambient heat exchanger, as well as the required pumps and fans. This paper presents a dynamic computational model able to simulate the complete behavior of a TEG, including both heat exchangers. The model uses the heat transfer and hydraulic equations to compute TEM-to-water and water-to-ambient thermal resistances, along with the resistance of the hot side heat exchanger at different operating conditions. Likewise, the model includes all the thermoelectric effect with temperature-dependent properties. The model calculates the net power generation at different configurations, providing a methodology to design and optimize the heat exchange in order to maximize the net power generation for a whole variety of TEGs.en
dc.description.sponsorshipThe authors are indebted to the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund for economic support of this work, included in the DPI2011-24287 Research Project.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherSpringer USen
dc.publisherTMSen
dc.publisherIEEEen
dc.relation.ispartofJournal of Electronic Materials, volume 43, issue 6, pp. 2320-2330en
dc.rights© 2014 TMSen
dc.subjectThermoelectric generationen
dc.subjectHeat exchangeren
dc.subjectHeat dissipationen
dc.subjectComputational modelen
dc.titleStudy of a complete thermoelectric generator behavior including water-to-ambient heat dissipation on the cold sideen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.contributor.departmentIngeniería Mecánica, Energética y de Materialeses_ES
dc.contributor.departmentMekanika, Energetika eta Materialen Ingeniaritzaeu
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.doi10.1007/s11664-014-3057-x
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//DPI2011-24287/ES/en
dc.relation.publisherversionhttps://doi.org/10.1007/s11664-014-3057-x
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt