Mostrar el registro sencillo del ítem

dc.creatorIbáñez de Garayo Quilchano, Alejandroes_ES
dc.creatorImizcoz Aramburu, Mikeles_ES
dc.creatorMaisterra Udi, Maitanees_ES
dc.creatorAlmazán, Fernandoes_ES
dc.creatorSanz Carrillo, Diegoes_ES
dc.creatorBimbela Serrano, Fernandoes_ES
dc.creatorCornejo Ibergallartu, Alfonsoes_ES
dc.creatorPellejero, Ismaeles_ES
dc.creatorGandía Pascual, Luises_ES
dc.date.accessioned2023-05-05T07:59:13Z
dc.date.available2023-05-05T07:59:13Z
dc.date.issued2023
dc.identifier.citationIbáñez-de-Garayo, A., Imizcoz, M., Maisterra, M., Almazán, F., Sanz, D., Bimbela, F., Cornejo, A., Pellejero, I., & Gandía, L. M. (2023). The 3D-Printing Fabrication of Multichannel Silicone Microreactors for Catalytic Applications. Catalysts, 13(1), 157. https://doi.org/10.3390/catal13010157en
dc.identifier.issn2073-4344
dc.identifier.urihttps://hdl.handle.net/2454/45241
dc.description.abstractMicrostructured reactors (MSRs) are especially indicated for highly demanding heterogeneous catalysis due to the small channel dimensions that minimize diffusional limitations and enhance mass and heat transport between the fluid and the catalyst. Herein, we present the fabrication protocol of the fused filament 3D printing of silicone monolithic microreactors based on a multichannel design. Microchannels of 200 to 800 µm in width and up to 20 mm in length were developed following the scaffold-removal procedure using acrylonitrile butadiene styrene (ABS) as the material for the 3D-printed scaffold fabrication, polydimethylsiloxane (PDMS) as the building material, and acetone as the ABS removing agent. The main printing parameters such as temperature and printing velocity were optimized in order to minimize the bridging effect and filament collapsing and intercrossing. Heterogeneous catalysts were incorporated into the microchannel walls during fabrication, thus avoiding further post-processing steps. The nanoparticulated catalyst was deposited on ABS scaffolds through dip coating and transferred to the microchannel walls during the PDMS pouring step and subsequent scaffold removal. Two different designs of the silicone monolithic microreactors were tested for four catalytic applications, namely liquid-phase 2-nitrophenol photohydrogenation and methylene blue photodegradation in aqueous media, lignin depolymerization in ethanol, and gas-phase CO2 hydrogenation, in order to investigate the microreactor performance under different reaction conditions (temperature and solvent) and establish the possible range of applications.en
dc.description.sponsorshipFinancial support was received from Spanish Agencia Estatal de Investigación and Spanish Ministerio de Ciencia e Innovación MCIN/AEI/10.13039/501100011033/ and FEDER “Una manera de hacer Europa” (grants PID2019-106687RJ-I00/AEI/10.13039/501100011033 and PID2021-127265OB-C21) as well as from Plan de Recuperación, Transformación y Resiliencia and NextGenerationEU (grants PLEC2022-009221 and TED2021-130846B-100), and Gobierno de Navarra grant PC091-092 FOREST2+ which are gratefully acknowledged. The Spanish Ministerio de Universidades fellowship FPU 18/01877 was granted to M.I. The Universidad Pública de Navarra predoctoral fellowship was granted to M.M. L.M. Gandía thanks Banco de Santander and Universidad Pública de Navarra for their financial support under the “Programa de Intensificación de la Investigación 2018” initiative.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherMDPIen
dc.relation.ispartofCatalysts 2023, 13, 157en
dc.rights© 2023 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject3D printingen
dc.subjectHeterogeneous catalystsen
dc.subjectMicroreactorsen
dc.subjectPDMSen
dc.subjectPhotocatalysten
dc.titleThe 3D-printing fabrication of multichannel silicone microreactors for catalytic applicationsen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.date.updated2023-05-05T07:34:22Z
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.doi10.3390/catal13010157
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106687RJ-I00/ES/en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127265OB-C21en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PLEC2022-009221en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-130846B-100en
dc.relation.publisherversionhttps://doi.org/10.3390/catal13010157
dc.type.versionVersión publicada / Argitaratu den bertsioaes
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2023 by the authors.  This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
La licencia del ítem se describe como © 2023 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt