Artículos de revista DF - FS Aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista DF - FS Aldizkari artikuluak by Author "Cesari, Eduard"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Open Access Entropy change caused by martensitic transformations of ferromagnetic shape memory alloys(MDPI, 2017) L'vov, Victor A.; Cesari, Eduard; Kosogor, Anna; Torrens Serra, Joan; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Física; FisikaIn this paper, our most recent findings on the influence of magnetic order on the main transformational caloric and elastic properties of shape memory alloys (SMAs) are reviewed. It is argued that ferromagnetic order has a strong influence on the temperature interval of martensitic transformation (MT), the characteristics of stress-induced MT, and the shear elastic modulus of SMA. The problem of separation of the magnetic contributions to the entropy change ΔS and heat Q exchanged in the course of martensitic transformation (MT) of SMA is considered in general terms, and theoretical formulas enabling the solution of the problem are presented. As an example, the ΔS and Q values, which were experimentally determined for Ni-Mn-Ga and Ni-Fe-Ga alloys with different Curie temperatures TC and MT temperatures TM, are theoretically analyzed. It is shown that for Ni-Mn-Ga martensites with TM < TC, the ratio of elastic and magnetic contributions to the entropy change may be greater or smaller than unity, depending on the temperature difference TC – TM.Publication Open Access Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation(Springer Nature, 2017) Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Beato López, Juan Jesús; Rodríguez Velamazán, José Alberto; Sánchez Marcos, J.; Gómez Polo, Cristina; Cesari, Eduard; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; FísicaMetamagnetic shape memory alloys have aroused considerable attraction as potential magnetic refrigerants due to the large inverse magnetocaloric effect associated to the magnetic-field-induction of a reverse martensitic transformation (martensite to austenite). In some of these alloys, the austenite phase can be retained on cooling under high magnetic fields, being the retained phase metastable after field removing. Here, we report a giant direct magnetocaloric effect linked to the anomalous forward martensitic transformation (austenite to martensite) that the retained austenite undergoes on heating. Under moderate fields of 10 kOe, an estimated adiabatic temperature change of 9 K has been obtained, which is (in absolute value) almost twice that obtained in the conventional transformation under higher applied fields. The observation of a different sign on the temperature change associated to the same austenite to martensite transformation depending on whether it occurs on heating (retained) or on cooling is attributed to the predominance of the magnetic or the vibrational entropy terms, respectively.Publication Open Access Long-range atomic order and entropy change at the martensitic transformation in a Ni-Mn-In-Co metamagnetic shape memory alloy(MDPI, 2014) Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Cesari, Eduard; Rodríguez Velamazán, José Alberto; Física; FisikaThe influence of the atomic order on the martensitic transformation entropy change has been studied in a Ni-Mn-In-Co metamagnetic shape memory alloy through the evolution of the transformation temperatures under high-temperature quenching and post-quench annealing thermal treatments. It is confirmed that the entropy change evolves as a consequence of the variations on the degree of L21 atomic order brought by thermal treatments, though, contrary to what occurs in ternary Ni-Mn-In, post-quench aging appears to be the most effective way to modify the transformation entropy in Ni-Mn-In-Co. It is also shown that any entropy change value between around 40 and 5 J/kgK can be achieved in a controllable way for a single alloy under the appropriate aging treatment, thus bringing out the possibility of properly tune the magnetocaloric effect.