Comunicaciones y ponencias de congresos INAMAT2 - INAMAT2 biltzarretako komunikazioak eta txostenak
Permanent URI for this collection
Browse
Browsing Comunicaciones y ponencias de congresos INAMAT2 - INAMAT2 biltzarretako komunikazioak eta txostenak by Author "Cruz Quesada, Guillermo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Open Access Hybrid xerogels doped with Tb(III) and Eu (III) and a water soluble Pybox ligand(2021) Cruz Quesada, Guillermo; Espinal Viguri, Maialen; Garrido Segovia, Julián José; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasHybrid organic-inorganic siliceous materials (ORMOSiLs) are a key focus within the nanoscience area as they combine advantages of inorganic materials without losing characteristics intrinsic of organic molecules. In the past years, our research group has designed hybrid siliceous xerogels (HSXG) with porosities and surface chemistries on demand for a range of applications, such as coatings for optic fiber sensors [1]. Although hybrid xerogels are mainly amorphous materials, recent studies by our group have demonstrated that introducing specific organic fragments on the precursors can induce selforganization during the sol-gel process to obtain a series of transparent nanostructured HSXG [2]. In the present work, a step forward is taken in the applicability of this type of HSXG by doping them with Tb(III) or Eu (III) cations and a water-soluble pybox-based antenna ligand (Pybox-EG= 2,2′-(4-(2-Ethoxyethoxy)pyridine-2,6-diyl)bis(4,5-dihydrooxazole)). Inclusion of photoluminescence will provide the materials with new properties and therefore new applications in fiber optic sensors (FOS) or in solar cells devices.Publication Open Access New hybrid organochlorinated xerogels(2021) Cruz Quesada, Guillermo; Espinal Viguri, Maialen; López Ramón, María Victoria; Garrido Segovia, Julián José; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasHybrid silica xerogels (HSXG) combine the properties of organic and inorganic components in the same material, which makes them promising and versatile candidates for multiple applications. These materials can be easily prepared by the sol-gel process, which offers the possibility to obtain different morphologies. The incorporation of organic precursors plays an important role in their properties, hence, allowing the design of materials for specific applications such as coatings for optical fibers [1]. The aim of this work was to study the influence of the alkyl chain and chlorine atom on the morphological and textural properties of various hybrid materials produced by co-condensation. For this purpose, three series of hybrid xerogels were prepared by co-condensation of TEOS and a chloroalkyltriethoxysilane (TEOS:ClRTEOS, R = methyl, ethyl or propyl) at different molar ratios. The influence of the precursors on the structure and textural properties of the xerogels was studied by means of N2 adsorption, XRD (X-ray diffraction), 29Si NMR (nuclear magnetic resonance) and FE-SEM (Field Emission-scanning electron microscope) [2].