Comunicaciones y ponencias de congresos INAMAT2 - INAMAT2 biltzarretako komunikazioak eta txostenak

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 12 of 12
  • PublicationOpen Access
    Sistema basado en tecnología 5G de monitorización psicoacústica del paisaje sonoro en smart cities con offloading computacional dinámico en el Edge
    (Sociedade Portuguesa de Acústica, 2020) Segura García, Jaume; Felici Castell, Santiago; Álvarez Calero, José M.; Wang, Qi; López Ballester, Jesús; Fayos, Rafael; Pérez Solano, Juan J.; Arana Burgui, Miguel; Institute for Advanced Materials and Mathematics - INAMAT2
    En las tecnologías de próxima generación, el control de las molestias por ruido ambiental en una Smart City debería ser lo más eficiente posible. Los sistemas IoT sobre tecnologías 5G ofrecen una gran oportunidad para hacer offloading del cómputo en los nodos sensores, ya que proporciona una serie de nuevos conceptos para el cómputo dinámico que las tecnologías anteriores no ofrecían. En este artículo, se ha implementado un sistema IoT completo basado en tecnología 5G para la monitorización psicoacústica utilizando diferentes opciones para descargar el cómputo a diferentes partes del sistema. Esta descarga se ha realizado mediante el desarrollo de diferentes splittings funcionales de los algoritmos de cálculo de las métricas psicoacústicas. Por último, se muestra una comparación del rendimiento entre los diferentes splittings funcionales y su aplicación con un análisis detallado.
  • PublicationOpen Access
    Space-time parallel methods for evolutionary reaction-diffusion problems
    (Springer, 2023) Arrarás Ventura, Andrés; Gaspar, F. J.; Portero Egea, Laura; Rodrigo, C.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2
    In recent years, the gradual saturation of parallelization in space has been a strongmotivation for the design and analysis of new parallel-in-time algorithms. Amongthese methods, the parareal algorithm, first introduced by Lions, Maday and Turinici[9], has received significant attention.
  • PublicationOpen Access
    Micro sized interdigital capacitor for gases detection based on graphene oxide coating
    (Springer, 2023) Vitoria Pascual, Ignacio; Armas, Dayron; Coronel Camones, Carlos Manuel; Algarra González, Manuel; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Mukhopadhyay, Subhas C.; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC
    A micro sized interdigital capacitor sensible to CO2 and NO is studied in this work. The photolithography technique enables to obtain fingers with dimensions of 10 × 500 µm and separated 7 µm between them. The deposition of a film composed of graphene oxide particles as the dielectrics of the capacitor allows to measure the gas concentration of CO2 and NO mixed with N2. The sensors were characterized in a gas chamber with a constant flow, obtaining promising results in changes of capacitance at 100 Hz. The sensors have a good linearity and sensitivity with a R2 = 0.996 and 5.026·10-1 pF/ % v/v for CO2 and R2=0.972 and 1.433·10-1 pF/ppb for NO.
  • PublicationOpen Access
    Grape stems as preservative in Tempranillo wine
    (2022) Pires Nogueira, Danielle; Jiménez Moreno, Nerea; Esparza Catalán, Irene; Moler Cuiral, José Antonio; Ancín Azpilicueta, Carmen; Zientziak; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Estadística, Informática y Matemáticas
    SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine, such as, its toxicity and the unpleasant odor in case of excess [1]. These reasons justify the importance of searching alternatives to reduce or eliminate this preservative from wine. Polyphenol rich extracts from agri-food industry by-products have been studied as a replacement for their high antioxidant activity, and positive results reported [2]. The grapes stems are discarded early on in the winemaking process, in spite of containing large amounts of polyphenolic compounds with antioxidant activity. The aim of this work was to determine whether the ground stem and its extract had the potential to totally or partially replace SO2 in wine.
  • PublicationOpen Access
    Smarterial – Smart matter optomagnetic
    (2021) Irisarri Erviti, Josu; Galarreta Rodríguez, Itziar; Marzo Pérez, Asier; Estatistika, Informatika eta Matematika; Ingeniaritza; Zientziak; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Ingeniería; Ciencias
    Smart materials, also known as programmable materials, are a combination of different components that have the capability to change shape, move around and adapt to numerous situations by applying an external controllable field. Previous works have used optically guided matter or magnetically actuated materials, but similarly to soft robots, they are limited in spatial resolution or strength. Here we propose combining a low temperature thermoplastic polymer Polycaprolactone (PCL) with ferromagnetic powder particles (Fe). Focused light can heat this compound at specific locations and make it malleable. These heated spots can be actuated by external magnetic fields. Once the material cools down, this process can be repeated, or reversed. The compound can be actuated contact-less in the form of 3D slabs, 2D sheets, and 1D filaments. We show applications for reversible tactile displays and manipulation of objects. The laboratory team has characterised the density, weight, magnetic attraction, magnetic force, phase change, thermal and electrical conductivity and heat difusión (spread point test) for smart ferromagnetic compounds of different mixture proportions. The main advantages of this smart matter optomagnetic are the high spatial resolution of light and the strong force of magnetic attraction whilst mechanical properties of polymers are practically conserved. Due to the low temperature required and the possibility to use infrared or electromagnetic induction to heat the compound, the smart material can be used in air, water, or inside biological tissue. Eventually, Smart materials will enrich collaborative movements, such as grab and hold, and more complex ones, as reshaping and reassembling.
  • PublicationOpen Access
    Hybrid xerogels doped with Tb(III) and Eu (III) and a water soluble Pybox ligand
    (2021) Cruz Quesada, Guillermo; Espinal Viguri, Maialen; Garrido Segovia, Julián José; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    Hybrid organic-inorganic siliceous materials (ORMOSiLs) are a key focus within the nanoscience area as they combine advantages of inorganic materials without losing characteristics intrinsic of organic molecules. In the past years, our research group has designed hybrid siliceous xerogels (HSXG) with porosities and surface chemistries on demand for a range of applications, such as coatings for optic fiber sensors [1]. Although hybrid xerogels are mainly amorphous materials, recent studies by our group have demonstrated that introducing specific organic fragments on the precursors can induce selforganization during the sol-gel process to obtain a series of transparent nanostructured HSXG [2]. In the present work, a step forward is taken in the applicability of this type of HSXG by doping them with Tb(III) or Eu (III) cations and a water-soluble pybox-based antenna ligand (Pybox-EG= 2,2′-(4-(2-Ethoxyethoxy)pyridine-2,6-diyl)bis(4,5-dihydrooxazole)). Inclusion of photoluminescence will provide the materials with new properties and therefore new applications in fiber optic sensors (FOS) or in solar cells devices.
  • PublicationOpen Access
    New hybrid organochlorinated xerogels
    (2021) Cruz Quesada, Guillermo; Espinal Viguri, Maialen; López Ramón, María Victoria; Garrido Segovia, Julián José; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    Hybrid silica xerogels (HSXG) combine the properties of organic and inorganic components in the same material, which makes them promising and versatile candidates for multiple applications. These materials can be easily prepared by the sol-gel process, which offers the possibility to obtain different morphologies. The incorporation of organic precursors plays an important role in their properties, hence, allowing the design of materials for specific applications such as coatings for optical fibers [1]. The aim of this work was to study the influence of the alkyl chain and chlorine atom on the morphological and textural properties of various hybrid materials produced by co-condensation. For this purpose, three series of hybrid xerogels were prepared by co-condensation of TEOS and a chloroalkyltriethoxysilane (TEOS:ClRTEOS, R = methyl, ethyl or propyl) at different molar ratios. The influence of the precursors on the structure and textural properties of the xerogels was studied by means of N2 adsorption, XRD (X-ray diffraction), 29Si NMR (nuclear magnetic resonance) and FE-SEM (Field Emission-scanning electron microscope) [2].
  • PublicationOpen Access
    Why using topological and analytical methods in aggregation of fuzzy preferences?
    (2020) Campión Arrastia, María Jesús; Induráin Eraso, Esteban; Raventós Pujol, Armajac; Estatistika, Informatika eta Matematika; Institute for Advanced Research in Business and Economics - INARBE; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    The Arrow’s Impossibility Theorem states that there is no function fusing individual preferences into a social one satisfying certain properties of 'common sense'. On the contrary, in some of the fuzzy extensions of the Arrovian model, possibility arises. We have developed a technique which has been able to prove new impossibility results in the fuzzy approach. In this poster, we will explain the fundaments of this technique and in which models we can apply it. This technique, is based on controlling the aggregation of fuzzy preferences through some aggregation functions of dichotomic preferences. For each fuzzy aggregation function, we get a family of dichotomic aggregation functions. Studying this family, we obtain information about the initial aggregation function. We will discuss why the fuzzy Arrovian models in which we can apply this technique are, in some sense, less fuzzy. Moreover, we will expose why we should use topological and analytical methods in the fuzzy models out of the scope of our technique.
  • PublicationOpen Access
    Chaos in the libration motion of an asymmetric non-rigid spacecraft
    (2004) Iñarrea, Manuel; Lanchares, Víctor; Palacián Subiela, Jesús Francisco; Pascual, Ana Isabel; Salas, José Pablo; Yanguas Sayas, Patricia; Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Matemáticas; Gobierno de Navarra / Nafarroako Gobernua
    We study the libration motion dynamics of an asymmetric spacecraft in circular orbit under the influence of a gravity gradient torque
  • PublicationOpen Access
    Study of the degradation of heat exchanger materials in the acidic environment of Teide National Park
    (2019) Catalán Ros, Leyre; Pérez Artieda, Miren Gurutze; Berlanga Labari, Carlos; Garacochea Sáenz, Amaia; Rodríguez García, Antonio; Domínguez, Vidal; Montañez, Ana Carolina; Padilla, Germán D.; Pérez, Nemesio M.; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Ingeniería
    Supplying power to volcanic monitoring stations constitutes a challenge due to both the access difficulties and the acidic environment associated with volcanoes. ELECTROVOLCAN project is developing thermoelectric generators that make use of the temperature of the available fumaroles to directly supply electricity to the stations in a robust, compact and reliable way. The main element of thermoelectric generators are the thermoelectric modules, based on Seebeck effect. Nonetheless, since the efficiency of these modules increases with the temperature difference between their sides, the introduction of heat exchangers becomes essential. The present study analyses the behavior of different materials used in the construction of the heat exchangers in the acidic environment of Teide National Park.
  • PublicationOpen Access
    Bayesian modeling approach in Big Data contexts: an application in spatial epidemiology
    (IEEE, 2020) Orozco Acosta, Erick; Adin Urtasun, Aritz; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    In this work we propose a novel scalable Bayesian modeling approach to smooth mortality risks borrowing information from neighbouring regions in high-dimensional spatial disease mapping contexts. The method is based on the well-known divide and conquer approach, so that the spatial domain is divided into D subregions where local spatial models can be fitted simultaneously. Model fitting and inference has been carried out using the integrated nested Laplace approximation (INLA) technique. Male colorectal cancer mortality data in the municipalities of continental Spain have been analyzed using the new model proposals. Results show that the new modeling approach is very competitive in terms of model fitting criteria when compared with a global spatial model, and it is computationally much more efficient.
  • PublicationOpen Access
    Interferometric vs wavelength selective optical fiber sensors for cryogenic temperature measurements
    (SPIE, 2017) Miguel Soto, Verónica de; Leandro González, Daniel; López Aldaba, Aitor; Beato López, Juan Jesús; Pérez de Landazábal Berganzo, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa eta Elektronikoa; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica y Electrónica; Física
    In this work, a preliminary study of the behavior of two different interferometric fiber optic sensors and two different wavelength selective fiber optic sensors is performed. A photonic cristal fiber Fabry-Pérot interferometer, a Sagnac interferometer, a commercial fiber Bragg grating (FBG) and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser are analyzed. A comparison of their sensitivities and resolutions is carried out to analyze their performance as sensors for cryogenic temperatures, taking into account their advantages and drawbacks.