Artículos de revista INAMAT2 - INAMAT2 aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista INAMAT2 - INAMAT2 aldizkari artikuluak by Author "Abad, José"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Open Access Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms(Elsevier Ltd, 2022) Serrano-Luján, Lucía; Toledo, Carlos; Colmenar, José Manuel; Abad, José; Urbina Yeregui, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasProgress in development of building-integrated photovoltaic systems is still hindered by the complexity of the physics and materials properties of the photovoltaic (PV) modules and its effect on the thermal behavior of the building. This affects not only the energy generation, as its active function and linked to economic feasibility, but also the thermal insulation of the building as part of the structure's skin. Traditional modeling methods currently presents limitations, including the fact that they do not account for material thermal inertia and that the proposed semi-empirical coefficients do not define all types of technologies, mounting configuration, or climatic conditions. This article presents an artificial intelligence-based approach for predicting the temperature of a poly-crystalline silicon PV module based on local outdoor weather conditions (ambient temperature, solar irradiation, relative outdoor humidity and wind speed) and indoor comfort parameters (indoor temperature and indoor relative humidity) as inputs. A combination of two algorithms (Grammatical Evolution and Differential Evolution) guides to the creation of a customized expression based on the Sandia model. Different data-sets for a fully integrated PV system were tested to demonstrate its performance on three different types of days: sunny, cloudy and diffuse, showing relative errors of less than 4% in all cases and including night time. In comparison to Sandia model, this method reduces the error by up to 11% in conditions of variability of sky over short time intervals (cloudy days).Publication Open Access Compact wideband groove gap waveguide bandpass filters manufactured with 3D printing and CNC milling techniques(MDPI, 2023-07-07) Máximo-Gutierrez, Clara; Hinojosa, Juan; Abad, José; Urbina Yeregui, Antonio; Álvarez-Melcon, Alejandro; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; ZientziakThis paper presents for the first time a compact wideband bandpass filter in groove gap waveguide (GGW) technology. The structure is obtained by including metallic pins along the central part of the GGW bottom plate according to an n-order Chebyshev stepped impedance synthesis method. The bandpass response is achieved by combining the high-pass characteristic of the GGW and the low-pass behavior of the metallic pins, which act as impedance inverters. This simple structure together with the rigorous design technique allows for a reduction in the manufacturing complexity for the realization of high-performance filters. These capabilities are verified by designing a fifth-order GGW Chebyshev bandpass filter with a bandwidth BW = 3.7 GHz and return loss RL = 20 dB in the frequency range of the WR-75 standard, and by implementing it using computer numerical control (CNC) machining and three-dimensional (3D) printing techniques. Three prototypes have been manufactured: one using a computer numerical control (CNC) milling machine and two others by means of a stereolithography-based 3D printer and a photopolymer resin. One of the two resin-based prototypes has been metallized from a silver vacuum thermal evaporation deposition technique, while for the other a spray coating system has been used. The three prototypes have shown a good agreement between the measured and simulated S-parameters, with insertion losses better than IL = 1.2 dB. Reduced size and high-performance frequency responses with respect to other GGW bandpass filters were obtained. These wideband GGW filter prototypes could have a great potential for future emerging satellite communications systems.Publication Open Access Passive heating and cooling of photovoltaic greenhouses including thermochromic materials(MDPI, 2021-01-15) Padilla, Javier; Toledo, Carlos; López-Vicente, Rodolfo; Montoya, Raquel; Navarro, José-Ramón; Abad, José; Urbina Yeregui, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2The integration of photovoltaic technologies into greenhouse envelopes appears to be an innovative and environmentally-friendly way to supply their various energy demands. However, the effect on the inner growing conditions, especially on the temperature, must be assessed in order to effectively implement this solution. In this study, experimental temperature data were obtained over two years for four structures built with different photovoltaic technologies (mono-crystalline silicon, amorphous silicon, cadmium telluride, and an organic polymeric technology) and fitted to a thermal model in order to provide a comprehensive analysis of their potential utilization as a cover material in greenhouses. Additionally, the thermal effect of color in structures composed of several common construction materials (brick, wood, plasterboard and glass) was quantified and modelled, supplementing the thermal analysis of passive solutions for this application. In all cases, inner and ambient temperature differences of up to +20 °C, created by a passive heating effect during the day, and – 5 °C, created by a passive cooling effect during the night, have been observed, suggesting the use of the photovoltaic modules with different degrees of structure coverage, complemented with the color tuning of the modules themselves as passive methods to control the temperature and light spectrum of greenhouses.