Artículos de revista INAMAT2 - INAMAT2 aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista INAMAT2 - INAMAT2 aldizkari artikuluak by Title
Now showing 1 - 20 of 532
Results Per Page
Sort Options
Publication Open Access 119Sn Mössbauer spectroscopy for assessing the local stress and defect state towards the tuning of Ni-Mn-Sn alloys(AIP Publishing, 2017) Unzueta, Iraultza; López García, Javier; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; FísicaThe influence of defects and local stresses on the magnetic properties and martensitic transformation in Ni50Mn35Sn15 is studied at macroscopic and atomic scale levels. We show that both the structural and magnetic properties of the alloy are very sensitive to slight microstructural distortions. Even though no atomic disorder is induced by milling, the antiphase boundaries linked to dislocations promote the antiferromagnetic coupling of Mn, resulting in a significant decrease in the saturation magnetization. On the other hand, the temperature range of the transformation is considerably affected by the mechanically induced local stresses, which in turn does not affect the equilibrium temperature between the austenitic and martensitic phases. Finally, we demonstrate that the recovery of the martensitic transformation is directly related to the intensity of the non-magnetic component revealed by 119Sn Mössbauer spectroscopy. This result opens the possibility of quantifying the whole contribution of defects and the local stresses on the martensitic transformation in Ni-Mn-Sn alloys.Publication Open Access The 3D-printing fabrication of multichannel silicone microreactors for catalytic applications(MDPI, 2023) Ibáñez de Garayo Quilchano, Alejandro; Imizcoz Aramburu, Mikel; Maisterra Udi, Maitane; Almazán, Fernando; Sanz Carrillo, Diego; Bimbela Serrano, Fernando; Cornejo Ibergallartu, Alfonso; Pellejero, Ismael; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaMicrostructured reactors (MSRs) are especially indicated for highly demanding heterogeneous catalysis due to the small channel dimensions that minimize diffusional limitations and enhance mass and heat transport between the fluid and the catalyst. Herein, we present the fabrication protocol of the fused filament 3D printing of silicone monolithic microreactors based on a multichannel design. Microchannels of 200 to 800 µm in width and up to 20 mm in length were developed following the scaffold-removal procedure using acrylonitrile butadiene styrene (ABS) as the material for the 3D-printed scaffold fabrication, polydimethylsiloxane (PDMS) as the building material, and acetone as the ABS removing agent. The main printing parameters such as temperature and printing velocity were optimized in order to minimize the bridging effect and filament collapsing and intercrossing. Heterogeneous catalysts were incorporated into the microchannel walls during fabrication, thus avoiding further post-processing steps. The nanoparticulated catalyst was deposited on ABS scaffolds through dip coating and transferred to the microchannel walls during the PDMS pouring step and subsequent scaffold removal. Two different designs of the silicone monolithic microreactors were tested for four catalytic applications, namely liquid-phase 2-nitrophenol photohydrogenation and methylene blue photodegradation in aqueous media, lignin depolymerization in ethanol, and gas-phase CO2 hydrogenation, in order to investigate the microreactor performance under different reaction conditions (temperature and solvent) and establish the possible range of applications.Publication Open Access Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms(Elsevier Ltd, 2022) Serrano-Luján, Lucía; Toledo, Carlos; Colmenar, José Manuel; Abad, José; Urbina Yeregui, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasProgress in development of building-integrated photovoltaic systems is still hindered by the complexity of the physics and materials properties of the photovoltaic (PV) modules and its effect on the thermal behavior of the building. This affects not only the energy generation, as its active function and linked to economic feasibility, but also the thermal insulation of the building as part of the structure's skin. Traditional modeling methods currently presents limitations, including the fact that they do not account for material thermal inertia and that the proposed semi-empirical coefficients do not define all types of technologies, mounting configuration, or climatic conditions. This article presents an artificial intelligence-based approach for predicting the temperature of a poly-crystalline silicon PV module based on local outdoor weather conditions (ambient temperature, solar irradiation, relative outdoor humidity and wind speed) and indoor comfort parameters (indoor temperature and indoor relative humidity) as inputs. A combination of two algorithms (Grammatical Evolution and Differential Evolution) guides to the creation of a customized expression based on the Sandia model. Different data-sets for a fully integrated PV system were tested to demonstrate its performance on three different types of days: sunny, cloudy and diffuse, showing relative errors of less than 4% in all cases and including night time. In comparison to Sandia model, this method reduces the error by up to 11% in conditions of variability of sky over short time intervals (cloudy days).Publication Open Access Achieving transfer from mathematics learning(MDPI, 2023) Orón, José Víctor; Lizasoain Iriso, María Inmaculada; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2The question of transfer is a special challenge in mathematics teaching because the wide range and fragmentation of the curricula have in many cases fostered an instrumental understanding, which makes transfer difficult for the students. Although promoting a relational learning has been a huge step forward in achieving transfer, understanding usually remains at the technical level of learning. Fostering critical thinking and metacognition raises learning to the psychological level, as students are encouraged to analyse their own thinking. Despite this, our hypothesis is that transfer will only be achieved when students are helped to reach a personal dimension, being encouraged to discover their own way of approaching the global reality of their lives beyond the subject. Learning, for instance, the greatest common divisor should be an opportunity to discover that, as numbers can be presented by their prime factors, people can be recognised by their features and interests. As such, looking for the greatest common divisor should not differ from discovering common interests with friends. Integrating specific and general learning will make transfer no longer unattainable. Personalising learning means discovering how one specific learning impacts on the personal way of understanding reality (oneself, others, and world), thus making transfer natural.Publication Open Access Acid-catalyzed etherification of glycerol with tert-butanol: reaction monitoring through a complete identification of the produced alkyl ethers(MDPI, 2023) Cornejo Ibergallartu, Alfonso; Reyero Zaragoza, Inés; Campo Aranguren, Idoia; Arzamendi Manterola, Gurutze; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Higher tert-Butyl glycerol ethers (tBGEs) are interesting glycerol derivatives that can be produced from tert-butyl alcohol (TBA) and glycerol using an acid catalyst. Glycerol tert-butylation is a complex reaction that leads to the formation of five tBGEs (two monoethers, two diethers, and one triether). In order to gain insight into the reaction progress, the present work reports on the monitoring of glycerol etherification with TBA and p-toluensulfonic acid (PTSA) as homogeneous catalysts. Two analytical techniques were used: gas chromatography (GC), which constitutes the benchmark method, and( 1)H nuclear magnetic resonance (H-1 NMR), whose use for this purpose has not been reported to date. A method for the quantitative analysis of tBGEs and glycerol based on H-1 NMR is presented that greatly reduced the analysis time and relative error compared with GC-based methods. The combined use of both techniques allowed for a complete quantitative and qualitative description of the glycerol tert-butylation progress. The set of experimental results collected showed the influence of the catalyst concentration and TBA/glycerol ratio on the etherification reaction and evidenced the intrinsic difficulties of this process to achieve high selectivities and yields to the triether.Publication Open Access Acoustic and psychoacoustic levels from an internal combustion engine fueled by hydrogen vs. gasoline(Elsevier, 2022) Arana Burgui, Miguel; San Martín Murugarren, Ricardo; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Gandía Pascual, Luis; Zientziak; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWhereas noise generated by road traffic is an important factor in urban pollution, little attention has been paid to this issue in the field of hydrogen-fueled vehicles. The objective of this study is to analyze the influence of the type of fuel (gasoline or hydrogen) on the sound levels produced by a vehicle with an internal combustion engine. A Volkswagen Polo 1.4 vehicle adapted for its bi-fuel hydrogen-gasoline operation has been used. Tests were carried out with the vehicle when stationary to eliminate rolling and aerodynamic noise. Acoustics and psychoacoustics levels were measured both inside and outside the vehicle. A slight increase in the noise level has only been found outside when using hydrogen as fuel, compared to gasoline. The increase is statistically significant, can be quantified between 1.1 and 1.7 dBA and is mainly due to an intensification of the 500 Hz band. Loudness is also higher outside the vehicle (between 2 and 4 sones) when the fuel is hydrogen. Differences in sharpness and roughness values are lower than the just-noticeable difference (JND) values of the parameters. Higher noise levels produced by hydrogen can be attributed to its higher reactivity compared to gasoline.Publication Open Access Addendum to "uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces"(Springer, 2022) Albiac Alesanco, Fernando José; Ansorena, José L.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAfter [Uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces, Positivity 26 (2022), Paper no. 35] was published, we realized that Theorem 4.2 therein, when combined with work of Casazza and Kalton (Israel J. Math. 103:141-175, 1998) , solves the long-standing problem whether there exists a quasi-Banach space with a unique unconditional basis whose Banach envelope does not have a unique unconditional basis. Here we give examples to prove that the answer is positive. We also use auxiliary results in the aforementioned paper to give a negative answer to the question of Bourgain et al. (Mem Am Math Soc 54:iv+111, 1985)*Problem 1.11 whether the infinite direct sum l(1)(X) of a Banach space X has a unique unconditional basis whenever X does.Publication Open Access ADDISC lumbar disc prosthesis: analytical and FEA testing of novel implants(Elsevier, 2023) Vanaclocha, Amparo; Vanaclocha, Vicente; Atienza, Carlos M.; Jordá Gómez, Pablo; Díaz Jiménez, Cristina; García Lorente, José Antonio; Sáiz Sapena, Nieves; Vanaclocha, Leyre; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2The intact intervertebral disc is a six-freedom degree elastic deformation structure with shock absorption. “Ball-and-socket” TDR do not reproduce these properties inducing zygapophyseal joint overload. Elastomeric TDRs reproduce better normal disc kinematics, but repeated core deformation causes its degeneration. We aimed to create a new TDR (ADDISC) reproducing healthy disc features. We designed TDR, analyzed (Finite Element Analysis), and measured every 500,000 cycles for 10 million cycles of the flexion-extension, lateral bending, and axial rotation cyclic compression bench-testing. In the inlay case, we weighted it and measured its deformation. ADDISC has two semi-spherical articular surfaces, one rotation centre for flexion, another for extension, the third for lateral bending, and a polycarbonate urethane inlay providing shock absorption. The first contact is between PCU and metal surfaces. There is no metal-metal contact up to 2000 N, and CoCr28Mo6 absorbs the load. After 10 million cycles at 1.2–2.0 kN loads, wear 140.96 mg (35.50 mm3 ), but no implant failures. Our TDR has a physiological motion range due to its articular surfaces’ shape and the PCU inlay bumpers, minimizing the facet joint overload. ADDISC mimics healthy disc biomechanics and Instantaneous Rotation Center, absorbs shock, reduces wear, and has excellent long-term endurancePublication Open Access Adsorption of rhodamine 6G and humic acids on composite bentonite-alginate in single and binary systems(Springer, 2018) Gomri, Fatima; Finqueneisel, Gisele; Zimny, Thierry; Korili, Sophia A.; Gil Bravo, Antonio; Boutahala, Mokhtar; Institute for Advanced Materials and Mathematics - INAMAT2In this work, the preparation, characterization, and sorption of rhodamine 6G and humic acids on a composite sodium alginate-bentonite were investigated. Their structure and morphology were analyzed by several techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, and N-2 adsorption at - 196 degrees C. A synergetic sorption mechanism was observed in binary systems; humic acids adsorption was enhanced by the presence of Rh6G in the mixture. The kinetic studies revealed that the sorption follows a pseudo-first-order kinetic model and the sorption capacities of Rh6G increased with the pH value. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for Rh6G up to 429.5 mg/g at 20 degrees C. On the basis of the data of the present investigation, it is possible to conclude that the composite exhibited excellent affinity for the dye and humic acids, and it can be applied to treat wastewater containing dye and natural organic matter.Publication Open Access Adsorption recovery of Ag(I) and Au(III) from an electronics industry wastewater on a clay mineral composite(University of Science and Technology Beijing, 2019) Rakhila, Youness; Elmchaouri, Abdellah; Mestari, Allal; Korili, Sophia A.; Abouri, Meriem; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasThe aim of this work is to investigate the ability of an adsorbent of a clay mineral composite to remove and recover gold and silver ions from wastewater. The composite was prepared by mixing phosphogypsum (PG), obtained from an industrial waste, and a natural clay mineral. The materials were characterized before and after use in adsorption by several techniques. Batch adsorption experiments were carried out, and the effects of the contact time and the pH and temperature of solution on the removal processes were investigated. The optimum pH for the adsorption was found to be 4. The adsorption of these metal ions reached equilibrium after 2 h of contact. The pseudo-first- and the pseudo-second-order kinetic models, as well as the Freundlich and the Langmuir isotherm equations, were considered to describe the adsorption results. The maximum adsorbed amount of 85 mg·g−1 Ag(I) and 108.3 mg·g−1 Au(III) was found. The recovery of the adsorbed gold and silver ions from the adsorbent was also analyzed. Strong acids appeared to be the best desorption agents to recover gold and silver ions. The use of aqua regia gave regeneration rates close to 95.3% and 94.3% for Ag(I) and Au(III), respectively. Finally, the removal of gold and silver ions from an industrial wastewater was tested in batch experiments, and percentage recoveries of 76.5% and 79.9% for Ag(I) and Au(III), respectively, were obtained. To carry out the industrial application of the proposed methodology, an economic viability study is required.Publication Open Access Afinidad entre queratosas de lana y distintos iones en fase acuosa analizada mediante sedimentación(Asociación de Químicos e Ingenieros del Instituto Químico de Sarriá, 2023) Soria Biurrun, Tomás; Abarzuza, Laura; Fernández-d'Arlas Bidegáin, Borja; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaEn este artículo se presentan los resultados de unos sencillos ensayos de solubilidad de la queratina en me-dios tanto básico, cercano al punto isoeléctrico como ácido en presencia de distintas sales tales como haluros sódicos y potásicos, así como varios cloruros alcalinos. El efecto de la sal sobre la solubilidad de la queratina o queratosas se describe en términos de la Regla de Competitividad de Fajans o Regla de Afinidades al Agua Equivalente, en base a la distinta tendencia de los iones hacia la hidratación. La aplicación de este principio se orienta a explicar la competitividad de interacción entre iones de sales inorgánicas y grupos ionizados de los aminoácidos de la queratina.Publication Open Access Aggregation of individual rankings through fusion functions: criticism and optimality analysis(IEEE, 2020) Bustince Sola, Humberto; Bedregal, Benjamin; Campión Arrastia, María Jesús; Silva, Ivanoska da; Fernández Fernández, Francisco Javier; Induráin Eraso, Esteban; Raventós Pujol, Armajac; Santiago, Regivan; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasThroughout this paper, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice where well-known impossibility results as the Arrovian ones are encountered and the decision-making approaches where the necessity of fusing rankings is unavoidable. Moreover it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice one should look for the maximal elements with respect to such orders defined on rankings IEEE.Publication Open Access Alleviating confounding in spatio-temporal areal models with an application on crimes against women in India(SAGE Publications, 2021) Adin Urtasun, Aritz; Goicoa Mangado, Tomás; Hodges, James S.; Schnell, Patrick M.; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasAssessing associations between a response of interest and a set of covariates in spatial areal models is the leitmotiv of ecological regression. However, the presence of spatially correlated random effects can mask or even bias estimates of such associations due to confounding effects if they are not carefully handled. Though potentially harmful, confounding issues have often been ignored in practice leading to wrong conclusions about the underlying associations between the response and the covariates. In spatio-temporal areal models, the temporal dimension may emerge as a new source of confounding, and the problem may be even worse. In this work, we propose two approaches to deal with confounding of fixed effects by spatial and temporal random effects, while obtaining good model predictions. In particular, restricted regression and an apparently—though in fact not—equivalent procedure using constraints are proposed within both fully Bayes and empirical Bayes approaches. The methods are compared in terms of fixed-effect estimates and model selection criteria. The techniques are used to assess the association between dowry deaths and certain socio-demographic covariates in the districts of Uttar Pradesh, India.Publication Open Access An alternative methodology for the evaluation of photocatalytic activity of polymeric coatings by monitoring dye degradation(MDPI, 2022) Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Esparza Gorráiz, Joseba; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2This work provides an alternative method for evaluating the photodegradation behaviour of different types of dyes such as Methylene Blue, Rhodamine B, Congo Red, Metanil Yellow, and Malachite Green. In this methodology, the coating is dyed with the chosen colorant and two beams of light are combined and channelled to a spot on the dyed coating through an optical fibre, the first one from an ultraviolet (UV) source (which is the responsible of activating photocatalysis) and the second one from a Visible light source, which is employed to monitor changes in colour along the time. The photocatalytic coating selected for testing this methodology consists of a mat of electrospun poly (acrylic acid) (PAA) fibres that acts as base film, furtherly coated by using layer-by-layer (LbL) assembly technique for the immobilization of two different photocatalytic metal oxide precursors (TiO2 and Fe2O3) nanoparticles. The morphological characterization of the samples has been implemented by means of scanning electron microscopy (SEM), confocal microscopy, and water contact angle measurements in order to analyse the resultant thickness, roughness, electrospun fibre diameter, and wettability. The experimental results clearly demonstrate the validity of the methodology to measure the photocatalytic activity in all dyed coatings, although significant differences have been observed depending on the selected dye.Publication Open Access Alternative thermal cycling treatment to produce abnormal grain growth in feMnAlNi alloys: study of composition variations and effects on the relative phase stabilities(Springer, 2021) La Roca, Paulo Matías; Guerrero, L.M.; Baruj, A.; Vallejos, J. M.; Sade, M.; Institute for Advanced Materials and Mathematics - INAMAT2An alternative method to obtain abnormal grain growth in Fe–Mn–Al–Ni system is presented. A crucible is used to control the cooling speed of the samples from 1200 °C enabling the nucleation of the equilibrium fcc phase. This fcc structure leads to an abnormal grain growth after heating to 1200 °C, temperature at which the bcc phase is stable. In this way, crystals with a mean diameter of 18 mm are obtained after 4 thermal cycles which take approximately 2 h. Additionally, precise composition measurements using neutron activation allowed the detection of a decrease in Mn content after each thermal cycle. Using electrical resistivity measurements, the effect of the variation of Mn content on the relative phase stability between the bcc austenite and the fcc martensite has been observed and is discussed here.Publication Open Access Analog lock-in amplifier design using subsampling for accuracy enhancement in GMI sensor applications(MDPI, 2023) Algueta-Miguel, Jose M.; Beato López, Juan Jesús; López Martín, Antonio; Ciencias; Zientziak; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2005A frequency downscaling technique for enhancing the accuracy of analog lock-in amplifier (LIA) architectures in giant magneto-impedance (GMI) sensor applications is presented in this paper. As a proof of concept, the proposed method is applied to two different LIA topologies using, respectively, analog and switching-based multiplication for phase-sensitive detection. Specifically, the operation frequency of both the input and the reference signals of the phase-sensitive detector (PSD) block of the LIA is reduced through a subsampling process using sample-and-hold (SH) circuits. A frequency downscaling from 200 kHz, which is the optimal operating frequency of the employed GMI sensor, to 1 kHz has been performed. In this way, the proposed technique exploits the inherent advantages of analog signal multiplication at low frequencies, while the principle of operation of the PSD remains unaltered. The circuits were assembled using discrete components, and the frequency downscaling proposal was experimentally validated by comparing the measurement accuracy with the equivalent conventional circuits. The experimental results revealed that the error in the signal magnitude measurements was reduced by a factor of 8 in the case of the analog multipliers and by a factor of 21 when a PSD based on switched multipliers was used. The error in-phase detection using a two-phase LIA was also reduced by more than 25%.Publication Open Access Analysis and application of an overlapped FEM-BEM for wave propagation in unbounded and heterogeneous media(Elsevier, 2022) Domínguez Baguena, Víctor; Ganesh, M.; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasAn overlapped continuous model framework, for the Helmholtz wave propagation problem in unbounded regions comprising bounded heterogeneous media, was recently introduced and analyzed by the authors (2020) [10]. The continuous Helmholtz system incorporates a radiation condition (RC) and our equivalent hybrid framework facilitates application of widely used finite element methods (FEM) and boundary element methods (BEM), and the resulting discrete systems retain the RC exactly. The FEM and BEM discretizations, respectively, applied to the designed interior heterogeneous and exterior homogeneous media Helmholtz systems include the FEM and BEM solutions matching in artificial interface domains, and allow for computations of the exact ansatz based far-fields. In this article we present rigorous numerical analysis of a discrete two-dimensional FEM-BEM overlapped coupling implementation of the algorithm. We also demonstrate the efficiency of our discrete FEM-BEM framework and analysis using numerical experiments, including applications to non-convex heterogeneous multiple particle Janus configurations. Simulations of the far-field induced differential scattering cross sections (DSCS) of heterogeneous configurations and orientation-averaged (OA) counterparts are important for several applications, including inverse wave problems. Our robust FEM-BEM framework facilitates computations of such quantities of interest, without boundedness or homogeneity or shape restrictions on the wave propagation model. © 2021 IMACSPublication Open Access Analysis by temperature-programmed reduction of the catalytic system Ni-Mo-Pd/Al2O3(Elsevier, 2023) Pedroarena Apezteguía, Iván; Grande López, Lucía; Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAlumina-supported nickel catalysts are used to facilitate many reactions at various scales. However, the deactivation of these catalysts is an important problem that has prompted the search for solutions such as the addition of other metals that act as promoters. In this research, the interactions that form between the support and the metals have been studied, a fundamental property that directly affects the performance of the catalyst. With this idea, several Ni-Pd and Ni-Mo bimetallic and various Ni-Mo-Pd trimetallic samples have been prepared, and the reduction capacity of the oxide phases by temperatura-programmed reduction has been analyzed and studied. It has been found that in bimetallic catalysts, Pd favors the appearance of NiO species that are more easily reducible than Mo. In the same way, the data obtained from the trimetallic simples suggest that the impregnation order of Mo and Pd is not a determining factor in these catalysts. In addition, it has been found that the co-impregnation of Ni with Pd gives better results than the sequential impregnation of these metals. The results obtained have also shown that the order of nickel impregnation is decisive. In the case of Ni-Mo catalysts, by impregnating the molybdenum first, catalysts with better reducing properties can be obtained.Publication Open Access Analysis of bright bolides recorded between October and November 2022 by the Southwestern Europe Meteor Network(MeteorNews, 2023) Madiedo, J. M.; Ortiz, J. L.; Izquierdo, J.; Santos-Sanz, P.; Aceituno, J.; Guindos, E. de; Yanguas Sayas, Patricia; Palacián Subiela, Jesús Francisco; San Segundo, A.; Ávila, D.; Tosar, B.; Gómez-Hernández, A.; Gómez-Martínez, Juan; García, Antonio; Aimee, A. I.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2We present in this work the analysis of some of the bright fireballs spotted in the framework of the Southwestern Europe Meteor Network (SWEMN) between October and November 2022. They have been observed from the Iberian Peninsula and had a maximum brightness ranging from mag. –7 to mag. –15. Most meteors included in this report were linked to the sporadic background and also to the Southern Taurids.Publication Unknown Analysis of remarkable bolides observed between June and July 2022 in the framework of the Southwestern EuropeMeteor Network(MeteorNews, 2022) Madiedo, J. M.; Ortiz, J. L.; Izquierdo, J.; Santos-Sanz, P.; Aceituno, J.; Guindos, E. de; Yanguas Sayas, Patricia; Palacián Subiela, Jesús Francisco; San Segundo, A.; Ávila, D.; Tosar, B.; Gómez-Hernández, A.; Gómez-Martínez, Juan; García, A.; Aimee, A. I.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Some of the bright bolides spotted in the framework of the Southwestern Europe Meteor Network from June to July 2022 are discussed here. These were observed from Spain. Their absolute magnitude ranges from –6 to –11. Fireballs included in this work were generated by different sources: the sporadic background, major meteoroid streams, and poorly known streams.