Browsing by Author "Mesiar, Radko"
Now showing 1 - 20 of 37
Results Per Page
Sort Options
Publication Open Access Comprehensive rules-based and preferences induced weights allocation in group decision-making with BUI(Springer, 2022) Li, GePeng; Yager, Ronald R.; Zhang, XinXing; Mesiar, Radko; Jin, LeSheng; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaDecision-makers' subjective preferences can be well modeled using preference aggregation operators and related induced weights allocation mechanisms. However, when several different types of preferences occur in some decision environment with more complex uncertainties, repeated uses of preferences induced weights allocation sometimes become unsuitable or less reasonable. In this work, we discuss a common decision environment where several invited experts will offer their respective evaluation values for a certain object. There are three types of preferences which will significantly affect the weights allocations from experts. Instead of unsuitably performing preference induced weights allocation three times independently and then merging the results together using convex combination as some literatures recently did, in this work, we propose some organic and comprehensive rules-based screen method to first rule out some unqualified experts and then take preference induced weights allocation for the refined group of experts. A numerical example in business management and decision-making is presented to show the cognitive reasonability and practical feasibility. © 2022, The Author(s).Publication Open Access Construction of admissible linear orders for interval-valued Atanassov intuitionistic fuzzy sets with an application to decision making(Elsevier, 2015) Miguel Turullols, Laura de; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Induráin Eraso, Esteban; Kolesárová, Anna; Mesiar, Radko; Matemáticas; Matematika; Automática y Computación; Automatika eta Konputazioa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work we introduce a method for constructing linear orders between pairs of intervals by using aggregation functions. We adapt this method to the case of interval-valued Atanassov intuitionistic fuzzy sets and we apply these sets and the considered orders to a decision making problem.Publication Open Access Construction of capacities from overlap indexes(Springer, 2017) Sanz Delgado, José Antonio; Galar Idoate, Mikel; Mesiar, Radko; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y ComputaciónIn this chapter, we show how the concepts of overlap function and overlap index can be used to define fuzzy measures which depend on the specific data of each considered problem.Publication Open Access Curve-based monotonicity: a generalization of directional monotonicity(Taylor & Francis, 2019) Roldán López de Hierro, Antonio Francisco; Sesma Sara, Mikel; Špirková, Jana; Lafuente López, Julio; Pradera, Ana; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this work we propose a generalization of the notion of directional monotonicity. Instead of considering increasingness or decreasingness along rays, we allow more general paths defined by curves in the n-dimensional space. These considerations lead us to the notion of α-monotonicity, where α is the corresponding curve. We study several theoretical properties of α-monotonicity and relate it to other notions of monotonicity, such as weak monotonicity and directional monotonicity.Publication Open Access d-Choquet integrals: Choquet integrals based on dissimilarities(Elsevier, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Altalhi, A. H.; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Takáč, Zdenko; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13The paper introduces a new class of functions from [0,1]n to [0,n] called d-Choquet integrals. These functions are a generalization of the 'standard' Choquet integral obtained by replacing the difference in the definition of the usual Choquet integral by a dissimilarity function. In particular, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals but the use of dissimilarities provides higher flexibility and generality. We show that some d-Choquet integrals are aggregation/pre-aggregation/averaging/functions and some of them are not. The conditions under which this happens are stated and other properties of the d-Choquet integrals are studied.Publication Embargo Degree of totalness: how to choose the best admissible permutation for vector fuzzy integration(Elsevier, 2023-08-30) Ferrero Jaurrieta, Mikel; Horanská, Lubomíra; Lafuente López, Julio; Mesiar, Radko; Pereira Dimuro, Graçaliz; Takáč, Zdenko; Gómez Fernández, Marisol; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe use of aggregation operators that require ordering of the data brings a problem when the structures to be aggregated are multi-valued, since there may be several admissible orders. To addressing this problem, the concept of admissible permutation was introduced for intervals. In this paper we extend this concept to vector domain. However, the problem of selecting the best possible permutation is still an open problem. In this paper we present a novel concept in order to choose the best admissible permutation for vectors: the degree of totalness. This concept allows us to represent to which degree the admissible permutation reorder given vectors as a chain with respect to the partial order. Finally, from the best admissible permutation we construct the Choquet integral.Publication Open Access Description and properties of curve-based monotone functions(Springer, 2019) Sesma Sara, Mikel; Miguel Turullols, Laura de; Roldán López de Hierro, Antonio Francisco; Špirková, Jana; Mesiar, Radko; Bustince Sola, Humberto; Institute of Smart Cities - ISCCurve-based monotonicity is one of the lately introduced relaxations of monotonicity. As directional monotonicity regards monotonicity along fixed rays, which are given by real vectors, curve-based monotonicity studies the increase of functions with respect to a general curve. In this work we study some theoretical properties of this type of monotonicity and we relate this concept with previous relaxations of monotonicity.Publication Open Access Directional monotonicity of multidimensional fusion functions with respect to admissible orders(Elsevier, 2023-03-09) Sesma Sara, Mikel; Bustince Sola, Humberto; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA25-2022The notion of directional monotonicity emerged as a relaxation of the monotonicity condition of aggregation functions. As the extension of aggregation functions to fuse more complex information than numeric data, directional monotonicity was extended to the framework of multidimensional data, with respect to the product order, which is a partial order. In this work, we present the notion of admissible order for multidimensional data and we define the concept of directional monotonicity for multidimensional fusion functions with respect to an admissible order. Moreover, we study the main properties of directionally monotone functions in this new context. We conclude that, while some of the properties are still valid (e.g. the set of directions of increasingness is still closed under convex combinations), some of the main ones no longer hold (e.g. there does not exist a finite set of directions that characterize standard monotonicity in terms of directional monotonicity).Publication Open Access Directions of directional, ordered directional and strengthened ordered directional increasingness of linear and ordered linear fusion operators(IEEE, 2019) Sesma Sara, Mikel; Marco Detchart, Cedric; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work we discuss the forms of monotonicity that have been recently introduced to relax the monotonicity condition in the definition of aggregation functions. We focus on directional, ordered directional and strengthened ordered directional monotonicity, study their main properties and provide some results about their links and relations among them. We also present two families of functions, the so-called linear fusion functions and ordered linear fusion functions and we study the set of directions for which these types of functions are directionally, ordered directionally and strengthened ordered directionally increasing. In particular, OWA operators are an example of ordered linear fusion functions.Publication Open Access Dissimilarity based choquet integrals(Springer, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this paper, in order to generalize the Choquet integral, we replace the difference between inputs in its definition by a restricted dissimilarity function and refer to the obtained function as d-Choquet integral. For some particular restricted dissimilarity function the corresponding d-Choquet integral with respect to a fuzzy measure is just the ‘standard’ Choquet integral with respect to the same fuzzy measure. Hence, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals. This approach allows us to construct a wide class of new functions, d-Choquet integrals, that are possibly, unlike the 'standard' Choquet integral, outside of the scope of aggregation functions since the monotonicity is, for some restricted dissimilarity function, violated and also the range of such functions can be wider than [0, 1], in particular it can be [0, n].Publication Open Access The evolution of the notion of overlap functions(Springer, 2021) Bustince Sola, Humberto; Mesiar, Radko; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bedregal, Benjamin; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this chapter we make a review of the notion of overlap function. Although originally developed in order to determine up to what extent a given element belongs to two sets, overlap functions have widely developed in the last years for very different problems. We recall here the motivation that led to the introduction of this new notion and we discuss further theoretical developments that have appeared to deal with other types of problems.Publication Embargo Extremal values-based aggregation functions(Elsevier, 2024-10-01) Halaš, Radomír; Mesiar, Radko; Kolesárová, Anna; Saadati, Reza; Herrera, Francisco; Rodríguez Martínez, Iosu; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCWe introduce and study aggregation functions based on extremal values, namely extended (𝑙, 𝑢)- aggregation functions whose outputs only depend on a fixed number 𝑙 of extremal lower input values and a fixed number 𝑢 of extremal upper input values, independently of the arity of the input 𝑛-tuples (𝑛 ≥ 𝑙 + 𝑢). We discuss several general properties of (𝑙, 𝑢)-aggregation functions and we study special (𝑙, 𝑢)-aggregation functions with neutral element, including t-conorms, t-norms and uninorms. We also study (𝑙, 𝑢)-aggregation functions defined by means of integrals with respect to discrete fuzzy measures, as well as (𝑙, 𝑢)-ordered weighted quasi-arithmetic means based on appropriate weighting vectors. We also stress some generalizations based on recently introduced new types of monotonicity. Some possible applications are sketched, too.Publication Open Access F-homogeneous functions and a generalization of directional monotonicity(Wiley, 2022) Santiago, Regivan; Sesma Sara, Mikel; Fernández Fernández, Francisco Javier; Takáč, Zdenko; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaA function that takes (Formula presented.) numbers as input and outputs one number is said to be homogeneous whenever the result of multiplying each input by a certain factor (Formula presented.) yields the original output multiplied by that same factor. This concept has been extended by the notion of abstract homogeneity, which generalizes the product in the expression of homogeneity by a general function (Formula presented.) and the effect of the factor (Formula presented.) by an automorphism. However, the effect of parameter (Formula presented.) remains unchanged for all the input values. In this study, we generalize further the condition of abstract homogeneity by introducing (Formula presented.) -homogeneity, which is defined with respect to a family of functions, enabling a different behavior for each of the inputs. Next, we study the properties that are satisfied by this family of functions and, moreover, we link this concept with the condition of directional monotonicity, which is a trendy property in the framework of aggregation functions. To achieve that, we generalize directional monotonicity by (Formula presented.) directional monotonicity, which is defined with respect to a family of functions (Formula presented.) and a family of vectors (Formula presented.). Finally, we show how the introduced concepts could be applied in two different problems of computer vision: a snow detection problem and image thresholding improvement. © 2022 The Authors. International Journal of Intelligent Systems published by Wiley Periodicals LLC.Publication Open Access A framework for generalized monotonicity of fusion functions(Elsevier, 2023) Sesma Sara, Mikel; Šeliga, Adam; Boczek, Michał; Jin, LeSheng; Kaluszka, Marek; Kalina, Martin; Bustince Sola, Humberto; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe relaxation of the property of monotonicity is a trend in the theory of aggregation and fusion functions and several generalized forms of monotonicity have been introduced, most of which are based on the notion of directional monotonicity. In this paper, we propose a general framework for generalized monotonicity that encompasses the different forms of monotonicity that we can find in the literature. Additionally, we introduce various new forms of monotonicity that are not based on directional monotonicity. Specifically, we introduce dilative monotonicity, which requires that the function increases when the inputs have increased by a common factor, and a general form of monotonicity that is dependent on a function T and a subset of the domain Z. This two new generalized monotonicities are the basis to propose a set of different forms of monotonicity. We study the particularities of each of the new proposals and their links to the previous relaxed forms of monotonicity. We conclude that the introduction of dilative monotonicity complements the conditions of weak monotonicity for fusion functions and that (T,Z)-monotonicity yields a condition that is slightly stronger than weak monotonicity. Finally, we present an application of the introduced notions of monotonicity in sentiment analysis.Publication Open Access Funciones de agregación inspiradas en la integral Choquet(CAEPIA, 2024) Bustince Sola, Humberto; Lafuente López, Julio; González García, Xabier; Pereira Dimuro, Graçaliz; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCEn este trabajo presentamos una nueva clase de funciones de agregación. Para la definición de estas nuevas funciones nos inspiramos en el método de construcción de las integrales Choquet, reemplazando las medidas por funciones adecuadas. Tras discutir la definición de las nuevas funciones, estudiamos algunas de su propiedades básicas y consideramos su relación con otras funciones de agregación utilizadas en la literatura, como los estadísticos de orden o las funciones de overlap y grouping.Publication Open Access A generalization of the Choquet integral defined in terms of the Mobius transform(IEEE, 2020) Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Horanská, Lubomíra; Mesiar, Radko; Stupñanová, Andrea; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this article, we propose a generalization of the Choquet integral, starting fromits definition in terms of the Mobius transform. We modify the product on R considered in the Lovasz extension form of the Choquet integral into a function F, and we discuss the properties of this new functional. For a fixed n, a complete description of all F yielding an n-ary aggregation function with a fixed diagonal section, independent of the considered fuzzy measure, is given, and several particular examples are presented. Finally, all functions F yielding an aggregation function, independent of the number n of inputs and of the considered fuzzy measure, are characterized, and related aggregation functions are shown to be just the Choquet integrals over the distorted inputs.Publication Open Access Generalized decomposition integral(Elsevier, 2020) Horanská, Lubomíra; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Mesiar, Radko; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this paper we propose two different generalizations of the decomposition integral introduced by Even and Lehrer. We modify the product operator merging a given capacity and the decomposition coefficients by some more general functions F and G and compare properties of the obtained functionals with properties of the original decomposition integral. Generalized decomposition integrals corresponding to the particular decomposition systems, being generalizations of Shilkret, Choquet and concave integrals, are studied and exemplified.Publication Open Access Generalized forms of monotonicity in the data aggregation framework(2019) Sesma Sara, Mikel; Bustince Sola, Humberto; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEl proceso de agregación trata el problema de combinar una colección de valores numéricos en un único valor que los represente y las funciones encargadas de esta operación se denominan funciones de agregación. A las funciones de agregación se les exige que cumplan dos condiciones de contorno y, además, han de ser monótonas con respecto a todos sus argumentos. Una de las tendencias en el área de investigación de las funciones de agregación es la relajación de la condición de monotonía. En este respecto, se han introducido varias formas de monotonía relajada. Tal es el caso de la monotonía débil, la monotonía direccional y la monotonía respecto a un cono. Sin embargo, todas estas relajaciones de monotonía están basadas en la idea de crecer, o decrecer, a lo largo de un rayo definido por un vector real. No existe noción de monotonía que permita que la dirección de crecimiento dependa de los valores a fusionar, ni tampoco existe noción de monotonía que considere el crecimiento a lo largo de caminos más generales, como son las curvas. Además, otra de las tendencias en la teoría de la agregación es la extensión a escalas más generales que la de los números reales y no existe relajación de monotonía disponible para este contexto general. En esta tesis, proponemos una colección de nuevas formas de monotonía relajada para las cuales las direcciones de monotonía pueden variar dependiendo del punto del dominio. En concreto, introducimos los conceptos de monotonía direccional ordenada, monotonía direccional ordenada reforzada y monotonía direccional punto a punto. Basándonos en funciones que cumplan las propiedades de monotonía direccional ordenada, proponemos un algoritmo de detección de bordes que justifica la aplicabilidad de estos conceptos. Por otro lado, generalizamos el concepto de monotonía direccional tomando, en lugar de direcciones en Rn, caminos más generales: definimos el concepto de monotonía basado en curvas. Por último, combinando ambas tendencias en la teoría de la agregación, generalizamos el concepto de monotonía direccional a funciones definidas en escalas más generales que la de los números reales.Publication Open Access Hesitant cognitive uncertain information in aggregation and decision making(University of Sistan and Baluchestan, 2024) Jin, LeSheng; Yager, Ronald R.; Ma, Chao; Langari, Reza; Jana, Chiranjibe; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe concepts of cognitive interval information and cognitive uncertain information, which are two recently proposed types of uncertain information, have been extended in this work to the typical hesitant fuzzy environment. We introduce the notions of typical hesitant monopolar cognitive interval information and typical hesitant cognitive uncertain information. To facilitate their analysis, we define uncertainty degree functions and score functions for these concepts using extended aggregation operators. Furthermore, we reanalyze some decision models discussed in earlier literature using these newly proposed concepts to demonstrate their advantages and potential applications.Publication Open Access Interval-valued Atanassov intuitionistic OWA aggregations using admissible linear orders and their application to decision making(IEEE, 2016) Miguel Turullols, Laura de; Bustince Sola, Humberto; Pekala, Barbara; Bentkowska, Urszula; Silva, Ivanoska da; Bedregal, Benjamin; Mesiar, Radko; Ochoa Lezaun, Gustavo; Automatika eta Konputazioa; Matematika; Institute of Smart Cities - ISC; Automática y Computación; MatemáticasBased on the definition of admissible order for interval-valued Atanassov intuitionistic fuzzy sets, we study OWA operators in these sets distinguishing between the weights associated to the membership and those associated to the nonmembership degree which may differ from the latter. We also study Choquet integrals for aggregating information which is represented using interval-valued Atanassov intuitionistic fuzzy sets. We conclude with two algorithms to choose the best alternative in a decision making problem when we use this kind of sets to represent information.