Publication:
Directional monotonicity of multidimensional fusion functions with respect to admissible orders

Consultable a partir de

2025-09-15

Date

2023

Director

Publisher

Elsevier
Acceso embargado / Sarbidea bahitua dago
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/recolecta
Métricas Alternativas
OpenAlexGoogle Scholar
cited by count

Abstract

The notion of directional monotonicity emerged as a relaxation of the monotonicity condition of aggregation functions. As the extension of aggregation functions to fuse more complex information than numeric data, directional monotonicity was extended to the framework of multidimensional data, with respect to the product order, which is a partial order. In this work, we present the notion of admissible order for multidimensional data and we define the concept of directional monotonicity for multidimensional fusion functions with respect to an admissible order. Moreover, we study the main properties of directionally monotone functions in this new context. We conclude that, while some of the properties are still valid (e.g. the set of directions of increasingness is still closed under convex combinations), some of the main ones no longer hold (e.g. there does not exist a finite set of directions that characterize standard monotonicity in terms of directional monotonicity).

Description

Keywords

Aggregation function, Directional monotonicity, Fusion function, Interval-valued data, Multidimensional data

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

Sesma-Sara, M., Bustince, H., & Mesiar, R. (2023). Directional monotonicity of multidimensional fusion functions with respect to admissible orders. Fuzzy Sets and Systems, 467, 108498. https://doi.org/10.1016/j.fss.2023.03.001

item.page.rights

© 2023 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.