Artículos de revista DIEE - IEES Aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista DIEE - IEES Aldizkari artikuluak by Department/Institute "Ingeniaritza Elektrikoa eta Elektronikoa"
Now showing 1 - 20 of 81
Results Per Page
Sort Options
Publication Open Access 250 km ultra long remote sensor system based on a fiber loop mirror interrogated by an OTDR(Optical Society of America, 2011) Bravo Acha, Mikel; Baptista, José Manuel; Santos, José Luís; López-Amo Sáinz, Manuel; Frazão, Orlando; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA 253 km ultra long remote displacement sensor system based on a fiber loop mirror interrogated by a commercial OTDR is proposed and experimentally demonstrated. The use of a fiber loop mirror increases the signal to noise ratio allowing the system to interrogate sensors placed 253 km away from the monitoring system without using any optical amplification. The displacement sensor was based on a long period grating spliced inside of the loop mirror, which modifies the mirror reflectivity accordingly to the applied displacement.Publication Open Access Analysis and description of HOLTIN service provision for AECG monitoring in complex indoor environments(MDPI, 2013) Led Ramos, Santiago; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Martínez de Espronceda Cámara, Miguel; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work, a novel ambulatory ECG monitoring device developed in-house called HOLTIN is analyzed when operating in complex indoor scenarios. The HOLTIN system is described, from the technological platform level to its functional model. In addition, by using in-house 3D ray launching simulation code, the wireless channel behavior, which enables ubiquitous operation, is performed. The effect of human body presence is taken into account by a novel simplified model embedded within the 3D Ray Launching code. Simulation as well as measurement results are presented, showing good agreement. These results may aid in the adequate deployment of this novel device to automate conventional medical processes, increasing the coverage radius and optimizing energy consumption.Publication Open Access Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters(Optical Society of America, 2003) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Claus, Richard O.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaA theoretical analysis of a fiber optical photonic band gap based tunable wavelength filter is presented. The design presented here is based on the quarter wave reflector with a liquid crystal defect layer in the middle of the structure. The filter generated by the structure is shifted in wavelength as the voltage applied to the structure is modified. Some critical parameters are analyzed: the effect of the consideration of fiber as the first layer and not the input medium in the shape of the filter, the number of layers of the structure, and the thickness of the defect layer. This last parameter determines the width of the wavelength sweep of the filter, but is limited by the creation of more defects. Some rules of practical implementation of this device are also given.Publication Open Access Arrangements of via-holes in microstrip lines as metallodielectric periodic structures(Wiley, 2000) Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Bacaicoa, Miguel; Hernández, Jorge; Gonzalo García, Ramón; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaIn this paper, the use of via holes in microstrip lines to design periodic structures that can be regarded as metallodielectric electromagnetic crystals is analyzed. The proposed novel periodic structures achieve a notably increased reflectivity compared to that obtained with a single via hole. Theoretical analysis and experimental results are provided showing a satisfactory performance for these devices as broadband reflectors or short circuits with enhanced behavior at high frequencies.Publication Open Access Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses(Optical Society of America, 2015) Urricelqui Polvorinos, Javier; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe demonstrate the extension of the measurement range of Brillouin optical time-domain analysis (BOTDA) sensors using a distributed Brillouin amplifier (DBA). The technique is based on injecting a DBA pump wave in the fiber to generate an additional Brillouin interaction that amplifies the BOTDA pump pulses and compensates optical fiber attenuation. This amplification does not introduce any significant noise to the BOTDA’s probe wave due to the inherent directionality of the Brillouin gain. Additionally, we deploy a differential pulse-width pair measurement method to avoid measurement errors due to the interplay between the self-phase modulation effect and the changes in the temporal shape of the pulses induced by the transient behavior of Brillouin gain. Experimental proof-of-concept results in a 50-km fiber link demonstrate full compensa- tion of the fiber’s attenuation with no penalty on the signal-to-noise ratio of the detected signal.Publication Open Access Brillouin optical time-domain analysis sensor with pump pulse amplification(Optical Society of America, 2016) Mompó Roselló, Juan José; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe demonstrate a simple technique to provide conventional Brillouin optical time-domain analysis sensors with mitigation for pump pulse attenuation. The technique is based on operating the sensor in loss configuration so that energy is transferred from the probe wave to the pump pulse that becomes amplified as it counter-propagates with the probe wave. Furthermore, the optical frequency of the probe wave is modulated along the fiber so that the pump pulse experiences a flat total gain spectrum that equally amplifies all the spectral components of the pulse, hence, preventing distortion. This frequency modulation of the probe brings additional advantages because it provides increased tolerance to non-local effects and to spontaneous Brillouin scattering noise, so that a probe power above the Brillouin threshold of the fiber can be safely deployed, hence, increasing the signal-to-noise ratio of the measurement. The method is experimentally demonstrated in a 100-km fiber link, obtaining a measurement uncertainty of 1 MHz at the worst-contrast position.Publication Open Access Characterization and modeling of the capacitive HBC Channel(IEEE, 2015) Pereira, Maicon D.; Álvarez Botero, Germán Andrés; Sousa, Fernando Rangel de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe increasing interest in wireless body area networks has created the need for alternative communication schemes. One example of such schemes is the use of the human body as a communication medium. This technology is called human body communication (HBC), and it offers advantages over the most common radiation-based methods, which makes it an interesting alternative to implement body area networks. The aim of this paper is to identify the influence of a fixture on the HBC channel characterization, and an extended model that includes the test fixtures to explain the measured channel response is proposed. The model was tested against the channel measurement results, and a good experiment-model correlation was obtained. The results show that the test fixture has a nonnegligible influence and that an extended model, based on the physical meaning of the phenomena involved, helps to explain the channel frequency profile results and behavior.Publication Open Access Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission(American Institute of Physics, 2011) Beruete Díaz, Miguel; Navarro Cía, Miguel; Kuznetsov, Sergei A.; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this letter we present an in-depth circuit analysis of anomalous extraordinary transmission ET through subwavelength slit and hole arrrays loaded by a dielectric slab. We show the key role played by the thickness of the dielectric slab in order to enhance the transmission for TE-polarized waves incident electric field parallel to the slits or to the short in-plane period in hole arrays arranged in rectangular lattice within the cut-off regime of the apertures and to suppress Wood’s anomaly. Analytical and numerical results together with experimental data are presented, showing good agreement among them. This work provides physical insight of the underlying mechanism governing anomalous ET and offers further independent control over orthogonal polarized waves impinging into subwavelength aperture arrays.Publication Open Access Compact dual-band terahertz quarter-wave plate metasurface(IEEE, 2014) Torres Landívar, Víctor; Etayo Salinas, David; Ortuño Molinero, Rubén; Navarro Cía, Miguel; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA dual-band quarter-wave plate based on a modified extraordinary transmission hole array is numerically analyzed and experimentally demonstrated at terahertz frequencies. To control independently orthogonal polarizations, the original square holes are connected with vertical slits and their lateral straight sides are replaced by meander lines. This smart design enables dual-band operation with unprecedented fractional bandwidths in a compact structure. Considering a flattening deviation lower than 40% of the optimum value, a fractional bandwidth of 53.8% and 3.8% is theoretically obtained (16.8% and 2.9% in the experiment) at 1 and 2.2 THz, respectively. At these two frequencies, the structure is 0.13-λ and 0.29-λ thick, respectively. Given the compactness of the whole structure and the performance obtained, this quarter-wave plate is presented as a competitive device for the terahertz band.Publication Open Access Comparison of wavelength-division-multiplexed distributed fiber Raman amplifier networks for sensors(Optical Society of America, 2006) Díaz Lucas, Silvia; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA novel distributed fiber Raman amplified star topology used for optical sensor wavelength-division multiplexing is proposed. The performance of this star configuration is compared to an optically amplified bus topology. The two different network topologies are compared and demonstrated experimentally and theoretically as means of gathering information from four wavelength-division-multiplexed photonic sensors. We report how the star configuration yields better signal-to-noise ratios than the bus topology. Furthermore, this improvement is made without increasing the complexity of the regular star topologies.Publication Open Access Control strategies to smooth short-term power fluctuations in large photovoltaic plants using battery storage systems(MDPI, 2014) Marcos Álvarez, Javier; Parra Laita, Íñigo de la; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe variations in irradiance produced by changes in cloud cover can cause rapid fluctuations in the power generated by large photovoltaic (PV) plants. As the PV power share in the grid increases, such fluctuations may adversely affect power quality and reliability. Thus, energy storage systems (ESS) are necessary in order to smooth power fluctuations below the maximum allowable. This article first proposes a new control strategy (step-control), to improve the results in relation to two state-of-the-art strategies, ramp-rate control and moving average. It also presents a method to quantify the storage capacity requirements according to the three different smoothing strategies and for different PV plant sizes. Finally, simulations shows that, although the moving-average (MA) strategy requires the smallest capacity, it presents more losses (2–3 times more) and produces a much higher number of cycles over the ESS (around 10 times more), making it unsuitable with storage technologies as lithium-ion. The step-control shown as a better option in scenery with exigent ramp restrictions (around 2%/min) and distributed generation against the ramp-rate control in all ESS key aspects: 20% less of capacity, up to 30% less of losses and a 40% less of ageing. All the simulations were based on real PV production data, taken every 5 s in the course of one year (2012) from a number of systems with power outputs ranging from 550 kW to 40 MW.Publication Open Access Decoupling of multifrequency dipole antenna arrays for microwave imaging applications(Hindawi Publishing Corporation, 2010) Sáenz Sáinz, Elena; Guven, K.; Ozbay, Ekmel; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe mutual coupling between elements of a multifrequency dipole antenna array is experimentally investigated by S-parameter measurements and planar near-field scanning of the radiated field. A multifrequency array with six dipoles is analyzed. In order to reduce the coupling between dipoles, a planarmetasurface is placed atop the array acting as superstrate. Themutual coupling of the antenna elements in the absence and presence of the superstrate is presented comparatively. Between 3 and 20 dB mutual coupling reduction is achieved when the superstrate is used. By scanning the field radiated by the antennas and far-field measurements of the radiation pattern, it is observed that the superstrate confines the radiated power, increases the boresight radiation, and reduces the endfire radiation.Publication Open Access Design and performance analysis of wireless body area networks in complex indoor e-Health hospital environments for patient remote monitoring(SAGE, 2016) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Rivarés Garasa, Carmen; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaIn this article, the design and performance analysis of wireless body area network–based systems for the transmission of medical information readable in an android-based application deployed within complex indoor e-Health scenarios is presented. The scenario under analysis is an emergency room area, where a patient is being monitored remotely with the aid of wearable wireless sensors placed at different body locations. Due to the advent of Internet of Things, in the near future a cloud of a vast number of wireless devices will be operating at the same time, potentially interfering one another. Ensuring good performance of the deployed wireless networks in this kind of environment is mandatory and obtaining accurate radio propagation estimations by means of a computationally efficient algorithm is a key issue. For that purpose, an in-house three-dimensional ray launching algorithm is employed, which provides radio frequency power distribution values, power delay profiles, and delay spread values for the complete volume of complex indoor scenarios. Using this information together with signal-to-noise estimations and link budget calculations, the most suitable wireless body area network technology for this context is chosen. Additionally, an in-house developed human body model has been developed in order to model the impact of the presence of monitored patients. A campaign of measurements has been carried out in order to validate the obtained simulation results. Both the measurements and simulation results illustrate the strong influence of the presented scenario on the overall performance of the wireless body area networks: losses due to material absorption and the strong influence of multipath components due to the great number of obstacles and the presence of persons make the use of the presented method very useful. Finally, an android-based application for the monitoring of patients is presented and tested within the emergency room scenario, providing a flexible solution to increase interactivity in health service provision.Publication Open Access Design of beam-forming networks for scannable multi-beam antenna arrays using CORPS(EMW Publishing, 2008) Panduro, Marco A.; Río Bocio, Carlos del; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThis paper deals with the design of beam-forming networks (BFN) for scannable multibeam antenna arrays using Coherently Radiating Periodic Structures (CORPS). This design of CORPS-BFN considers the optimization of the complex inputs of the feeding network by using the Differential Evolution (DE) algorithm. Simulation results for different configurations of CORPS-BFN for a scannable multibeam linear array are presented. The results shown in this paper present certain interesting characteristics in the array factor response for the scannable multibeam linear array and the feeding network simplification for the design of BFN based on CORPS.Publication Open Access Design of concentric ring antenna arrays for isoflux radiation in GEO satellites(Institute of Electronics, Information and Communication Engineers (IEICE), 2011) Reyna, Alberto; Panduro, Marco A.; Río Bocio, Carlos del; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe design of concentric rings arrays for isoflux radiation is reported in this paper. This design considers the reduction of the side lobe level and the isoflux radiation requirements for Geostationary Earth Orbit (GEO) satellites. The optimization problem considers the spacing between rings and the levels of amplitude excitations. The well-known method of Particle Swarm Optimization (PSO) is utilized for the optimization. The obtained results could lead the satellite hardware to be reduced significantly even more than results presented previously in the literature.Publication Open Access Design of MOS-translinear multiplier/dividers in analog VLSI(Hindawi Publishing Corporation, 2000) López Martín, Antonio; Carlosena García, Alfonso; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA general framework for designing current-mode CMOS analog multiplier/divider circuits based on the cascade connection of a geometric-mean circuit and a squarer/ divider is presented. It is shown how both building blocks can be readily obtained from a generic second-order MOS translinear loop. Various implementations are proposed, featuring simplicity, favorable precision and wide dynamic range. They can be successfully employed in a wide range of analog VLSI processing tasks. Experimental results of two versions, based on stacked and folded MOS-translinear loops and fabricated in a 2.4-1am CMOS process, are provided in order to verify the correctness of the proposed approach.Publication Open Access Electro-thermal modelling of a supercapacitor and experimental validation(Elsevier, 2014) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Hernández, Andoni; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThis paper reports on the electro-thermal modelling of a Maxwell supercapacitor (SC), model BMOD0083 with a rated capacitance of 83 F and rated voltage of 48 V. One electrical equivalent circuit was used to model the electrical behaviour whilst another served to simulate the thermal behaviour. The models were designed to predict the SC operating voltage and temperature, by taking the electric current and ambient temperature as input variables. A five-stage iterative method, applied to three experiments, served to obtain the parameter values for each model. The models were implemented in MATLABSimulink , where they interacted to reciprocally provide information. These models were then validated through a number of tests, subjecting the SC to different current and frequency profiles. These tests included the validation of a bank of supercapacitors integrated into an electric microgrid, in a real operating environment. Satisfactory results were obtained from the electric and thermal models, with RMSE values of less than 0.65 V in all validations.Publication Open Access End-of-fiber signals strongly influence the first and second phases of the M wave in the vastus lateralis: implications for the study of muscle excitability(Frontiers Media, 2018) Rodríguez Falces, Javier; Place, Nicolas; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIt has been recurrently observed that, for compound muscle action potentials (M wave) recorded over the innervation zone of the vastus lateralis, the descending portion of the first phase generally shows an 'inflection' or 'shoulder'. We sought to clarify the electrical origin of this shoulder-like feature and examine its implications. M waves evoked by maximal single shocks to the femoral nerve were recorded in monopolar and bipolar configurations from 126 individuals using classical (10-mm recording diameter, 20-mm inter-electrode distance) electrodes and from eight individuals using small electrodes arranged in a linear array. The changes of the M-wave waveform at different positions along the muscle fibers' direction were examined. The shoulder was identified more frequently in monopolar (97%) than in bipolar (46%) M waves. The shoulder of M waves recorded at different distances from the innervation zone had the same latency. Furthermore, the shoulder of the M wave recorded over the innervation zone coincided in latency with the positive peak of that recorded beyond the muscle. The positive phase of the M wave detected 20 mm away from the innervation zone was essentially composed of non-propagating components. The shoulder-like feature in monopolar and bipolar M waves results from the termination of action potentials at the superficial aponeurosis of the vastus lateralis. We conclude that, only the amplitude of the first phase, and not the second, of M waves recorded monopolarly and/or bipolarly in close proximity to the innervation zone can be used reliably to monitor possible changes in muscle membrane excitability.Publication Open Access Etched LPFGs in reflective configuration for sensitivity and attenuation band depth increase(IEEE, 2016) Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Cruz, José Luis; Rego, Gaspar; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA reflection configuration setup for long-period fiber gratings is presented. It permits to obtain a unique band with attenuation double than that obtained in transmission configuration, which is interesting for applications where this value is reduced (e.g., the mode transition phenomenon). The method is based on the deposition of a silver mirror at the end of the optical fiber, which permits to absorb the power transmitted through cladding modes and to avoid the generation of interferometric bands. The method also solves the requirement of a precise cleave or to polish the end of the grating, a drawback present in other publications. The versatility of the setup has been proved by application of the cladding etching technique until the attenuation band corresponding with the first guided mode in the cladding is visualized in an optical spectrum analyzer. The experimental results are supported by the numerical data obtained with a method based on the exact calculation of core and cladding modes and the utilization of coupled mode theoryPublication Open Access Evaluation of electromagnetic dosimetry of wireless systems in complex indoor scenarios with human body interaction(EMW Publishing, 2012) Aguirre Gallego, Erik; Arpón Díaz-Aldagalán, Javier; Azpilicueta Fernández de las Heras, Leyre; Ramos González, Victoria; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaIn this work, the influence of human body within the estimation of dosimetric values is analyzed. A simplified human body model, including the dispersive nature of material parameters of internal organs, skin, muscle, bones and other elements has been implemented. Such a model has been included within an indoor scenario in which an in-house 3D ray launching code has been applied to estimate received power levels within the complete scenario. The results enhance previous dosimetric estimations, while giving insight on influence of human body model in power level distribution and enabling to analyze the impact in the complete volume of the scenario.