Artículos de revista IMAB - IMAB aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista IMAB - IMAB aldizkari artikuluak by Subject "Abiotic stress tolerance"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Open Access Editorial: Beneficial effects of fungal endophytes in major agricultural crops(Frontiers Media, 2022) Poveda Arias, Jorge; Baptista, Paula; Sacristán, Soledad; Velasco, Pablo; Institute for Multidisciplinary Research in Applied Biology - IMABEndophytic microorganisms are those that can dwell within plant tissues without any external sign of infection or other harmful effects on the host plants (Burragoni and Jeon, 2021). In recent decades, the important role that both bacterial and fungal endophytes play in plant growth and development, as well as in their ability to survive in their environment, has been identified (Burragoni and Jeon, 2021). Endophytic fungi can be found colonizing any plant organ, presenting a very different distribution and diversity among plants of different species, among plants of the same species, and even among organs of the same plant (Aamir et al., 2020). In crops, endophytic fungi act through different beneficial pathways, as biofertilizers promoting plant growth, as biological control agents of pathogens and pests or as inducers of tolerance under abiotic stresses, having great importance in the development of new strategies for sustainable agriculture (Aamir et al., 2020). These benefits for crops have been studied in the papers published in this Research Topic: promotion of plant growth in tomato (Paradza et al.), cotton (Silva et al.) and wheat (Asim et al.), increased tolerance under salt stress in tritordeum and perennial ryegrass (Toghueo et al.), as biological control agents against pathogenic fungi through antibiosis and mycoparasitism (Silva et al.), or as insecticidal agents through activation of systemic plant defenses (Paradza et al.; Agbessenou et al.), among others.Publication Open Access Fungal endophytes of Brassicaceae: molecular interactions and crop benefits(Carnegie Institution por Science, 2022) Poveda Arias, Jorge; Díaz González, Sandra; Díaz Urbano, María; Velasco, Pablo; Sacristán, Soledad; Institute for Multidisciplinary Research in Applied Biology - IMABBrassicaceae family includes an important group of plants of great scientific interest, e.g., the model plant Arabidopsis thaliana, and of economic interest, such as crops of the genus Brassica (Brassica oleracea, Brassica napus, Brassica rapa, etc.). This group of plants is characterized by the synthesis and accumulation in their tissues of secondary metabolites called glucosinolates (GSLs), sulfur-containing compounds mainly involved in plant defense against pathogens and pests. Brassicaceae plants are among the 30% of plant species that cannot establish optimal associations with mycorrhizal hosts (together with other plant families such as Proteaceae, Chenopodiaceae, and Caryophyllaceae), and GSLs could be involved in this evolutionary process of non-interaction. However, this group of plants can establish beneficial interactions with endophytic fungi, which requires a reduction of defensive responses by the host plant and/or an evasion, tolerance, or suppression of plant defenses by the fungus. Although much remains to be known about the mechanisms involved in the Brassicaceae-endophyte fungal interaction, several cases have been described, in which the fungi need to interfere with the GSL synthesis and hydrolysis in the host plant, or even directly degrade GSLs before they are hydrolyzed to antifungal isothiocyanates. Once the Brassicaceae-endophyte fungus symbiosis is formed, the host plant can obtain important benefits from an agricultural point of view, such as plant growth promotion and increase in yield and quality, increased tolerance to abiotic stresses, and direct and indirect control of plant pests and diseases. This review compiles the studies on the interaction between endophytic fungi and Brassicaceae plants, discussing the mechanisms involved in the success of the symbiosis, together with the benefits obtained by these plants. Due to their unique characteristics, the family Brassicaceae can be seen as a fruitful source of novel beneficial endophytes with applications to crops, as well as to generate new models of study that allow us to better understand the interactions of these amazing fungi with plants.