ISC - Institute of Smart Cities
Permanent URI for this community
Browse
Browsing ISC - Institute of Smart Cities by Title
Now showing 1 - 20 of 1096
Results Per Page
Sort Options
Publication Open Access ±0.3v bulk-driven fully differential buffer with high figures of merit(MDPI, 2022) Gangineni, Manaswini; Ramírez-Angulo, Jaime; Vázquez-Leal, Héctor; Huerta-Chua, Jesús; López Martín, Antonio; González Carvajal, Ramón; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónA high performance bulk-driven rail-to-rail fully differential buffer operating from ±0.3V supplies in 180 nm CMOS technology is reported. It has a differential–difference input stage and common mode feedback circuits implemented with no-tail, high CMRR bulk-driven pseudo-differential cells. It operates in subthreshold, has infinite input impedance, low output impedance (1.4 kΩ), 86.77 dB DC open-loop gain, 172.91 kHz bandwidth and 0.684 µWstatic power dissipation with a 50-pF load capacitance. The buffer has power efficient class AB operation, a small signal figure of merit FOMss = 12.69 MHzpFµW-1, a large signal figure of merit FOMls = 34.89 (V/µs) pFµW-1, CMRR = 102 dB, PSRR+ = 109 dB, PSRR- = 100 dB, 1.1 µV/√Hz input noise spectral density, 0.3 mVrms input noise and 3.5 mV input DC offset voltage.Publication Open Access 0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer(MDPI, 2022) Carrillo, Juan M.; Cruz Blas, Carlos Aristóteles de la; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dBPublication Open Access 0.6-V CMOS bulk-driven instrumentation amplifier for IoMT bioimpedance analysis(Wiley, 2024) Carrillo, Juan M.; Ocampo-Hidalgo, Juan J.; Corbacho, Israel; Cruz Blas, Carlos Aristóteles de la; Domínguez, Miguel Á.; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCAn instrumentation amplifier (IA), aimed at wideband bioimpedance analysisin the low-voltage low-power scenario of internet of medical things (IoMT), ispresented. The operation principle is based on the indirect current feedbacktechnique, where an input and a feedback transconductor determine thevoltage gain of the preamplifier. The required transconductors consist of twobulk-driven flipped-voltage-follower cells and an active pseudo-resistor, thusleading to a linear and compact implementation. The circuit has been designedand fabricated in 180 nm CMOS technology to operate with a 0.6-V supply.Experimental results obtained from measurements on eight samples of thesilicon prototype show that when the IA is programmed to have a nominalvoltage gain of 11 V/V, the bandwidth is 316.2 kHz, the CMRR exceeds63 dB, and the maximum output voltage that can be processed with a THDbelow –40 dB is 555 mVpp.Publication Open Access 1-V 15-μW 130-nm CMOS super class AB OTA(IEEE, 2020) López Martín, Antonio; Algueta-Miguel, Jose M.; Garde Luque, María Pilar; Carvajal, Ramón G.; Ramírez-Angulo, Jaime; Institute of Smart Cities - ISCA super class AB recycling folded cascode amplifier in 130 nm CMOS is presented. It combines for the first time adaptive biasing of the differential input pair, nonlinear current mirrors with current starving and dynamic biasing of the cascode transistors in the output branch. Measurements using a ±0.5V supply show slew rate and gain bandwidth product improvement factors of 26 and 112 versus the conventional topology for the same bias currents, yielding the highest combined FoM to date.Publication Open Access A 1.2-V current-mode RMS-to-DC converter based on a novel two-quadrant electronically simulated MOS translinear loop(IEEE, 2020) Martincorena Arraiza, Maite; Cruz Blas, Carlos Aristóteles de la; Algueta-Miguel, Jose M.; López Martín, Antonio; Institute of Smart Cities - ISCA novel current-mode CMOS RMS-to-DC converter using translinear techniques is introduced. It is based on a squarer/divider cell that is implemented using an electronically simulated loop with a novel biasing scheme that allows its operation in two quadrants. The cell is designed using a differential input current and a small signal first order filter to implement the voltage averaging, leading to a compact solution that can be used with low voltage supplies. The converter has been fabricated in a standard 130-nm CMOS process, and measurement results are provided to demonstrate the feasibility of the system.Publication Open Access A 3-D indoor analysis of path loss modeling using kriging techniques(IEEE, 2022) Diago Mosquera, Melissa; Aragón Zavala, Alejandro; Azpilicueta Fernández de las Heras, Leyre; Shubair, Raed M.; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis study proposes a novel measurement-based method to predict and model three-dimensional (3-D) path loss in indoor scenarios, which first regresses 28 GHz measurements via median path loss modeling and then includes ordinary Kriging to interpolate shadowing. The performance of this method is evaluated by investigating the spatial structure that follows shadowing through the semivariogram, covariance function, and correlogram as variography tools. It is shown that semivariogram outperforms the other statistics to describe shadowing spatial continuity in path loss modeling in terms of the mean absolute error.Publication Open Access 3-D printed horn antennas and components performance for space and telecommunications(IEEE, 2018) Teniente Vallinas, Jorge; Iriarte Galarregui, Juan Carlos; Caballero Nagore, Rubén; Valcázar Berdofe, Daniel; Goñi, Mikel; Martínez, Aitor; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this work, a study of the performance of several antennas and components, manufactured using an accurate stereolithography 3D printer and resin for maximum accuracy and detail, is carried out. Electroless plating of the components to cover the pieces with a thick copper layer to improve their mechanical resistance is undertaken. Several SatCom horn antennas and components are designed, manufactured, and tested. A detailed study of a spline horn antenna and a filter is covered. These results are compared to the metallic lathe manufactured versions. Conclusions are derived from these tests, which are useful to improve additive manufactured components in future versions.Publication Open Access 360 nW gate-driven ultra-low voltage CMOS linear transconductor with 1 MHz bandwidth and wide input range(IEEE, 2020) Rico-Aniles, Héctor Daniel; Ramírez-Angulo, Jaime; López Martín, Antonio; González Carvajal, Ramón; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónA low voltage linear transconductor is introduced. The circuit is a pseudo differential architecture that operates with ±0.2V supplies and uses 900nA total biasing current. It employs a floating battery technique to achieve low voltage operation. The transconductor has a 1MHz bandwidth. It exhibits a SNR = 72dB, SFDR = 42dB and THD = 0.83% for a 100mVpp 10kHz sinusoidal input signal. Moreover, stability is not affected by the capacitance of the signal source. The circuit has been validated with a prototype chip fabricated in a 130nm CMOS technology.Publication Open Access A 3D ray launching time-frequency channel modeling approach for UWB ranging applications(IEEE, 2020) Otim, Timothy; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Bahillo, Alfonso; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónUltrawideband (UWB) has the ability to achieve decimetre level of ranging accuracy, hence, its wider usage nowadays in the field of positioning. In spite of the attractiveness of UWB, its performance is strongly dependent on the propagation channel. In this paper, an analysis of the the UWB channel for ranging applications using an inhouse developed 3D Ray launching (3D RL) algorithm is presented. A parametric study has been performed considering variations of cuboid size resolution of the simulation mesh, in order to analyze convergence impact on estimation accuracy, focusing on Radio frequency (RF) power levels as well as time domain characterization. The RF power results have been used to model the path-loss, small scale fading, and the power delay profile so as to obtain the statistics of the multipath channel as well as time of flight (TOF) estimation values. The results show that the 3D RL is a valuable tool to test UWB systems for ranging applications with a mean accuracy of up to 10 cm in multipath conditions considering complex scatterer distributions within the complete volume of the scenarios under test.Publication Open Access 3D-ray launching MIMO channel geometric estimation(IEEE, 2022) Rodríguez Corbo, Fidel Alejandro; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe complete multiple-input–multiple-output (MIMO) channel simulation in deterministic techniques can be a computationally intensive task, due to the inherent scenario’s complexity and number of antennas. The spatial coherence among MIMO elements is a reasonable assumption to approximate the channel from a single point simulation. In this letter, a novel method to incorporate a geometrical approximation of the MIMO channel into a three-dimensional ray launching (3D-RL) algorithm is presented. The method is antenna type independent and the orientation of the array is embedded in the antenna representation. Relevant information of the MIMO channel characteristics like the root mean square (rms) delay spread, the maximum delay spread, phase and channel capacity are obtained and compared with the full 3D-RL simulation of the entire MIMO array, achieving 93.4% reduction in computational time.Publication Open Access 3D-RL MIMO capacity estimations under vegetation blockage(IEEE, 2023-09-07) Rodríguez Corbo, Fidel Alejandro; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Azpilicueta Fernández de las Heras, Leyre; Institute of Smart Cities - ISCMultiplexing gains are one of the many promises for increasing throughput in multiple-input-multiple-output (MIMO) systems. In this sense, a rich scattered environment may be beneficial for the multiplexing capabilities of the MIMO channel. However, mm Wave frequency bands tend to have less effective multipath contributions than sub-6 GHz bands. In this work, an in-deep analysis of the multiplexing capabilities in a mm Wave vehicular-to-infrastructure (V2I) channel is performed. Metrics that may impact the channel capacity like received power and angle-of-arrival (AoA) Spread are fully analyzed as well.Publication Open Access 4P operational harmonic and blade vibration in wind turbines: a real case study of an active yaw system and a concrete tower(Elsevier, 2024) Torres Elizondo, Antonio; Gil Soto, Javier; Plaza Puértolas, Aitor; Aginaga García, Jokin; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis study aims to comprehensively investigate the impact of mechanical loads on the performance and lifetime of wind turbines, with particular emphasis on blade vibration at the 4P operational harmonic. Experiments and advanced aeroelastic simulations are combined to assess how active yaw systems and concrete towers affect this specific vibration. Contrary to previous assumptions, field tests have shown that there is a resonance phenomenon in the blade. Specifically, the first edgewise mode of the blade resonates at the 4P frequency, which did not happen in the aeroelastic simulations. Remarkably, thorough aeroelastic simulations show that this resonance is triggered by the excitation of the Edgewise Backward Whirling mode of the rotor, which occurs at the 3P operating harmonic. This study highlights the need for accurate and precise modelling using aeroelastic simulations to reproduce the resonance phenomenon and analyse the contributing factors. A major breakthrough is the discovery that stiffening the active yaw system significantly reduces the 3P hub fixed motions, resulting in reduced blade vibration at the 4P frequency. Furthermore, the simulations show the sensitivity of the 4P vibration to different wind characteristics, providing valuable insights for the design of wind turbines in different environmental conditions.Publication Open Access 5G spatial modeling of personal RF-EMF assessment within aircrafts cabin environments(IEEE, 2022) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Rodríguez Corbo, Fidel Alejandro; López Iturri, Peio; Shubair, Raed M.; Ramos González, Victoria; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónRecently, new wireless communication systems within aircrafts cabins have drawn higher attention due to the growing demand of passenger services and applications and their corresponding requirements and constraints. In this regard, the fifth generation (5G) of wireless communication becomes an attractive and promising alternative to enable aircraft passengers' comfort and entertainment along the flight, considering its potential benefits in term of high data transfers and low latencies. Nevertheless, general population concern about radio frequency electromagnetic fields (RF-EMF) safety in general and, in particular to the environmental exposure at which we are all exposed in these flights, increases at the same time. Thus, in this work, we present an experimental campaign of measurements for current passengers' environmental exposure assessment, performed in different real generalizable type of flights and aircrafts' cabins, in order to provide current RF-EMF exposure insight within these complex heterogeneous environments. In addition, worst-case uplink 5G scenarios, where all 5G cellular handsets of the passengers operate at the same time, have been simulated by means of an in-house developed 3D Ray Launching (3D-RL) deterministic technique. Before takeoff and after landing, critical scenarios with the aircrafts' doors closed have been selected and assessed considering different types of modeled aircrafts full of passengers, considering 5G frequency range 2 (5G-FR2) operating links. The obtained results show that the operation frequency and the morphology and topology of the aircraft cabin have a great influence in the environmental RF-EMF passengers' spatial distribution and overall exposure, but not exceeding, even in worst case conditions, the international established regulatory limits. © 2022 IEEE.Publication Open Access AC amplifiers with ultra-low corner frequency by using bootstrapping(Institution of Engineering and Technology, 2021) Martincorena Arraiza, Maite; Carlosena García, Alfonso; Cruz Blas, Carlos Aristóteles de la; López Martín, Antonio; Ingeniería Eléctrica y Electrónica; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA novel architecture for an AC (i.e. high-pass) amplifier is proposed allowing a drastic reduction of the cutoff frequency to the sub-Hertz range. It builds upon the classic AC configuration with a high gain amplifier and a parallel RC circuit in the feedback loop, by increasing the feedback resistance through bootstrapping. Resistance multiplying factors higher than four orders of magnitude are easily achievable. The basic principle can be applied to several practical implementations, though in this letter it is demonstrate with measurement results of an op-amp based discrete implementation.Publication Open Access AC coupled amplifier with a resistance multiplier technique for ultra-low frequency operation(Elsevier, 2022) Martincorena Arraiza, Maite; Cruz Blas, Carlos Aristóteles de la; Carlosena García, Alfonso; López Martín, Antonio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis paper proposes a novel, tunable AC coupled capacitive feedback amplifier, exhibiting an ultra-low high pass corner frequency. This is accomplished by actively boosting the output resistive value of a MOS transistor in weak inversion. The circuit is based on a more general architecture, recently proposed by the authors, and is analyzed in terms of its capability to achieve ultra-low frequency operation, its DC performance, and noise. The proposed technique is demonstrated via measurement results from a fabricated test chip prototype using a standard 0.18 µm CMOS technology. The proposed amplifier provides a tunable high pass corner frequency from 20 mHz to 475 mHz, consuming 4.71 μW and a total area of 0.069 mm2.Publication Open Access AC/DC millivoltage sensor by means of ITO-coated optical fibers: towards monitoring of biosignals(IEEE, 2019) Aginaga Etxamendi, Concepción Isabel; Socorro Leránoz, Abián Bentor; Fuentes Lorenzo, Omar; Del Villar, Ignacio; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaThis contribution shows the monitoring of AC and DC millivoltage signals by means of lossy mode resonances generated by Indium Tin Oxide (ITO) on optical fibers. Sensors were obtained by sputtering ITO thin-films onto 25 mm-length segments of 200 μm bare optical fibers. Depositing a 1 μm thin-film of ITO leads to obtain reduced thin-film resistances of near 340 ohms. This allows the detection of voltage signals by monitoring the wavelength shift of the resonances. Sensitivities up to 40 nm/V can be achieved when tracking sinusoidal signals of a few cents of mV peak-to-peak. This opens the path for further research pursuing the detection of biomedical signals.Publication Open Access An acceleration approach for channel deterministic approaches based on quasi-stationary regions in V2X communications(IEEE, 2024) Rodríguez Corbo, Fidel Alejandro; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Azpilicueta Fernández de las Heras, Leyre; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCVehicular environments are characterized by a high mobility, which alongside with the presence of abundant dynamic scatterers, lead to vehicular communication channels to be intrinsically non-stationary. In this sense, the quasi-stationary regions (QSRs) can assess the degree of non-stationarity within a determined scenario, and ultimately assist geometrical models to increase channel sampling intervals or to develop more efficient hybrid stochastic-geometric channel models. In this work, the channel QSRs in a vehicular communication (V2X) generic highdense urban environment at millimeter wave (mmWave) frequencies (28 GHz) have been analyzed using different approaches, such as the extended channel response into a Doppler-delay domain or the shadow fading spatial auto-correlation function (SF ACF) methodology. Then, the QSRs have been used as sampling distance in an in-house developed three-dimensional ray-launching (3D-RL) algorithm as an acceleration approach. The time variant channel features have been extracted and compared with the full resolution approach, obtaining consistent results when considering the QSR sampling distances, while decreasing by 83.30% the simulation computational time for the Doppler-delay approach, and 92.86% for the SF ACF method.Publication Open Access Accumulating priority queues versus pure priority queues for managing patients in emergency departments(Elsevier, 2019) Cildoz Esquíroz, Marta; Ibarra, Amaia; Mallor Giménez, Fermín; Institute of Smart Cities - ISCImproving the quality of healthcare in emergency departments (EDs) is at the forefront of many hospital managers’ efforts, as they strive to plan and implement better patient flow strategies. In this paper, a new approach to manage the patient flow in EDs after triage is proposed. The new queue discipline, named accumulative priority queue with finite horizon and denoted by APQ-h, is an extension of the accumulative priority queue (APQ) discipline that considers not only the acuity level of patients and their waiting time but also the stage of the healthcare treatment. APQ disciplines have been studied in the literature from a queueing theory point of view, which requires assumptions rarely found in real EDs, such as homogeneity in the patient arrival pattern and only one service stage. The APQ-h discipline accumulates priority from the point of waiting for the first physician consultation until the moment the waiting time exceeds the upper time limit set to access the physician after the patient's arrival. A recent study shows that a management strategy of this type is applied in practice in several Canadian EDs. The main aim of this paper is to explore the implementation of APQ-h managing policies in a real ED. For this purpose, a simulation model replicating a real ED is developed. This simulation model is also used to obtain the optimal APQ type polices through a simulation-based optimization method that solves a multi-objective and stochastic optimization problem. Arrival to provider time and total waiting time in the ED are considered to be the key ED performance indicators. An extensive computational analysis shows the flexibility of the APQ-h and APQ discipline and their superiority over other pure priority disciplines in a real setting and in a variety of ED scenarios. In addition, no superiority over the APQ discipline is demonstrated. © 2019 The AuthorsPublication Open Access Acoustic lock: position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator(American Institute of Physics, 2018) Cox, L; Croxford, A; Drinkwater, Bruce W.; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCWe demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from k/5.56 (1.5 mm) to k/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in midair: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning.Publication Open Access Active control for medium-frequency transformers flux-balancing in a novel three-phase topology for cascaded conversion structures(IEEE, 2020) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Navarrete, Manuel; Balda Belzunegui, Julián; González Senosiain, Roberto; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaEfficiency and power density are important parameters in the design of power electronics converters. In many applications, low-frequency transformers are being substituted for medium-frequency and high-frequency transformers in order to reduce the volume and therefore the cost of the transformer. However, preventing their saturation is a complex task. This paper studies the medium-frequency transformers' flux balancing in a novel three-phase topology for cascaded conversion structures.Based on the modulation technique of the converter, a method to directly measure the magnetizing current of the medium-frequency transformers is proposed in this paper. A control loop to regulate the dc value of the magnetizing current is also designed and developed. Simulation results validate the correct operation of the control loop, which prevents the transformer saturation.