Libros y capítulos de libros IMAB - IMAB liburuak eta liburuen kapituluak
Permanent URI for this collection
Browse
Browsing Libros y capítulos de libros IMAB - IMAB liburuak eta liburuen kapituluak by Title
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Open Access Plant-based antibodies and virus-like particles: a leap towards new therapeutic development(Nova Science Publishers, 2008) Obregón, Patricia; Fernández San Millán, Alicia; Veramendi Charola, Jon; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABThe generation of therapeutic antibodies and fusion proteins for medical application is one of the fastest growing areas of the pharmaceutical industry with more than 150 therapeutic antibodies and fusion proteins currently either in clinical trial or use. At the same time, the use of virus-like particles has become an interesting tool in the fight against viral infections. Thus, some devastating high-incidence diseases such as HIV or cancer are currently chosen as clear targets for this type of therapeutical strategy. However, the high production cost of the current manufacturing systems of these molecules is a latent hurdle to overcome. With the advent of biotechnology, transgenic plants have emerged as a more economical new strategy for recombinant protein production. Antibodies and virus-like particles have been demonstrated to be well expressed in plants. In addition, the achieved protein expression level of most of them in the plant system has been reported to be compatible with that established for commercial viability. These facts make the use of plants for the generation of these types of recombinant molecules a very promising strategy to the development of lower cost biopharmaceuticals. In consequence, it could lead to exert important economical and medical implications as being affordable for developing countries where the incidence of infectious diseases is the highest. The development and production of these therapeutic molecules in plants is reviewed in this chapter, and the medical implications, advantages and limitations of both the plant-system and plant-derived molecules for practical use are discussed.Publication Open Access Structural role of silicon-mediated cell wall stability for ammonium toxicity alleviation(Springer International Publishing, 2023-06-23) Rivero Marcos, Mikel; Silva, Gabriel Barbosa Jr.; Ariz Arnedo, Idoia; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABThe use of ammonium-based fertilizers together with nitrification inhibitors could be a possible alternative to limit N losses, currently derived from nitrate enrichment of soil and water, which are detrimental to the environment. However, prolonged application of ammonium as the main N source can result in development disorders in most plants, commonly referred to as 'ammonium syndrome'. Even if the origin of plants' sensitivity to ammonium is not fully understood, important biological components related to this syndrome have been unraveled over the last years. These components could constitute key targets to develop tools to counteract ammonium toxicity in crops. Thus, this chapter describes structural and metabolic components of root cells related to plant sensitivity to ammonium and how they could be key targets to combat ammonium toxicity by the use of fortification elements, such as silicon. Si is a beneficial element for plants as it increases their resistance to several stresses, including ammonium. New experimental evidences show specific role of Si in alleviating ammonium toxicity of several crops.