González de Andrés, Ester

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

González de Andrés

First Name

Ester

person.page.departamento

Ciencias del Medio Natural

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: a modelling approach
    (Elsevier, 2015) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Canals Tresserras, Rosa María; González de Andrés, Ester; San Emeterio Garciandía, Leticia; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    In the southern Pyrenees, human population and therefore land uses have changed from forests to pastures, then crops, and back to pastures and secondary forests during the last two centuries. To understand what such rapid land use changes have meant for carbon (C) and nitrogen (N) stocks, we used data from two forest sites in the western Pyrenees, combined with regional data on pastures and crop production (potato, cereal), to calibrate the ecosystem-level model FORECAST. Then, we simulated 150-year of land use for each site, emulating historical changes. Our estimates show that the conversion from forests into pastures and crops created C and N deficits (378-427 Mg C ha-1, 4.0-4.6 Mg N ha-1) from which these sites are still recovering. The main ecological process behind the creation of these deficits was the loss of the ecological legacy of soil organic matter (SOM) created by the forest, particularly during conversion to farming. Pastures were able to reverse, stop or at least slow down the loss of such legacy. In conclusion, our work shows the deep impact of historical land use in ecosystem attributes, both in magnitude of removed C and N stocks and in duration of such impact. Also, the usefulness of ecological modelling in absence of historical data to estimate such changes is showcased, providing a framework for potential C and N stocks to be reached by climate change mitigation measures such as forest restoration.
  • PublicationOpen Access
    ENSO and NAO affect long-term leaf litter dynamics and stoichiometry of Scots pine and European beech mixedwoods
    (Wiley, 2019) González de Andrés, Ester; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Guan, Biing T.; Lo, Yueh-Hsin; Castillo Martínez, Federico; Ciencias; Zientziak
    Litterfall dynamics (production, seasonality and nutrient composition) are key factors influencing nutrient cycling. Leaf litter characteristics are modified by species composition, site conditions and water availability. However, significant evidence on how large-scale, global circulation patterns affect ecophysiological processes at tree and ecosystem level remains scarce due to the difficulty in separating the combined influence of different factors on local climate and tree phenology. To fill this gap, we studied links between leaf litter dynamics with climate and other forest processes, such as tree-ring width (TRW) and intrinsic water-use efficiency (iWUE) in two mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) in the south-western Pyrenees. Temporal series (18 years) of litterfall production and elemental chemical composition were decomposed following the ensemble empirical mode decomposition (EEMD) method and relationships with local climate, large-scale climatic indices, TRW and Scots pine´s iWUE were assessed. Temporal trends in N:P ratios indicated increasing P-limitation of soil microbes, thus affecting nutrient availability, as the ecological succession from a pine-dominated to a beech-dominated forest took place. A significant influence of large-scale patterns on tree-level ecophysiology was explained through the impact of the North Atlantic Oscillation (NAO) and El Niño – Southern Oscillation (ENSO) on water availability. Positive NAO and negative ENSO were related to dry conditions and, consequently, to early needle shedding and increased N:P ratio of both species. Autumn storm activity appears to be related to premature leaf abscission of European beech. Significant cascading effects from large-scale patterns on local weather influenced pine TRW and iWUE. These variables also responded to leaf stoichiometry fallen three years prior to tree-ring formation. Our results provide evidence of the cascading effect that variability in global climate circulation patterns can have on ecophysiological processes and stand dynamics in mixed forests.