Zabalza Aznárez, Ana
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Zabalza Aznárez
First Name
Ana
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Primary metabolism in an Amaranthus palmeri population with multiple resistance to glyphosate and pyrithiobac herbicides(Elsevier, 2022) Barco Antoñanzas, María; Gil Monreal, Miriam; Eceiza, Mikel Vicente; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA20-6138The objective of this work was to characterize the resistance mechanisms and the primary metabolism of a multiple resistant (MR) population of Amaranthus palmeri to glyphosate and to the acetolactate synthase (ALS) inhibitor pyrithiobac. All MR plants analysed were glyphosate-resistant due to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification. Resistance to pyrithiobac was more variable among individuals and was related to point mutations at five positions in the ALS gene sequence: A122, A205, W574, S653 and G654. All MR plants were heterozygous for W574, the most abundant mutation. In nontreated plants, the presence of mutations did not affect ALS functionality, and plants with the W574L mutation showed the highest ALS resistance level to pyrithiobac. The accumulation of the transcripts corresponding to several genes of the aromatic amino acid (AAA) and branched-chain amino acid (BCAA) pathways detected in nontreated MR plants indicated additional effects of EPSPS gene amplification and ALS mutations. The physiological performance of the MR population after treatment with glyphosate and/or pyrithiobac was compared with that of a sensitive (S) population. The increase induced in total soluble sugars, AAA or BCAA content by both herbicides was higher in the S population than in the MR population. Physiological effects were not exacerbated after the mixture of both herbicides in S or in MR populations. This study provides new insights into the physiology of a multiple resistant A. palmeri, which could be very useful for achieving effective management of this weed.Publication Open Access Cysteine proteases are activated in sensitive Amaranthus palmeri populations upon treatment with herbicides inhibiting amino acid biosynthesis(Wiley, 2023) Barco Antoñanzas, María; Font Farre, María; Eceiza, Mikel Vicente; Gil Monreal, Miriam; Van der Hoorn, Reiner; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe herbicides glyphosate and pyrithiobac inhibit the enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid biosynthetic pathway and acetolactate synthase (ALS) in the branched-chain amino acid biosynthetic pathway, respectively. Here we characterise the protease activity profiles of a sensitive (S), a glyphosate-resistant (GR) and a multiple-resistant (MR) population of Amaranthus palmeri in response to glyphosate and pyrithiobac. Amino acid accumulation and cysteine protease activities were induced with both herbicides in the S population and with pyrithiobac in the GR population, suggesting that the increase in cysteine proteases is responsible for the increased degradation of the available proteins and the observed increase in free amino acids. Herbicides did not induce any changes in the proteolytic activities in the populations with target-site resistance, indicating that this effect was only induced in sensitive plants.