Zabalza Aznárez, Ana

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Zabalza Aznárez

First Name

Ana

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 29
  • PublicationOpen Access
    Both foliar and residual applications of herbicides that inhibit amino acid biosynthesis induce alternative respiration and aerobic fermentation in pea roots
    (Wiley, 2016) Armendáriz García, Óscar; Gil Monreal, Miriam; Zulet González, Amaia; Zabalza Aznárez, Ana; Royuela Hernando, Mercedes; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The objective of this work was to ascertain whether there is a general pattern of carbon allocation and utilisation in plants following herbicide supply, independent of the site of application: sprayed on leaves or supplied to nutrient solution. The herbicides studied were the amino acid biosynthesis-inhibiting herbicides (ABIH): glyphosate, an inhibitor of aromatic amino acid biosynthesis, and imazamox, an inhibitor of branched-chain amino acid biosynthesis. All treated plants showed impaired carbon metabolism; carbohydrate accumulation was detected in both leaves and roots of the treated plants. The accumulation in roots was due to lack of use of available sugars as growth was arrested, which elicited soluble carbohydrate accumulation in the leaves due to a decrease in sink strength. Under aerobic conditions, ethanol fermentative metabolism was enhanced in roots of the treated plants. This fermentative response was not related to a change in total respiration rates or cytochrome respiratory capacity, but an increase in alternative oxidase capacity was detected. Pyruvate accumulation was detected after most of the herbicide treatments. These results demonstrate that both ABIH induce the less-efficient, ATP-producing pathways, namely fermentation and alternative respiration, by increasing the key metabolite, pyruvate. The plant response was similar not only for the two ABIH but also after foliar or residual application.
  • PublicationOpen Access
    Effects of EPSPS Copy Number Variation (CNV) and glyphosate application on the aromatic and branched chain amino acid synthesis pathways in Amaranthus palmeri
    (Frontiers Media, 2017) Fernández Escalada, Manuel; Zulet González, Ainhoa; Gil Monreal, Miriam; Zabalza Aznárez, Ana; Ravet, Karl; Gaines, Todd; Royuela Hernando, Mercedes; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A key enzyme of the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19), is the known target of the widely used herbicide glyphosate. Glyphosate resistance in Amaranthus palmeri, one of the most troublesome weeds in agriculture, has evolved through increased EPSPS gene copy number. The aim of this work was to study the pleiotropic effects of (i) EPSPS increased transcript abundance due to gene copy number variation (CNV) and of (ii) glyphosate application on the aromatic amino acid (AAA) and branched chain amino acid (BCAA) synthesis pathways. Hydroponically grown glyphosate sensitive (GS) and glyphosate resistant (GR) plants were treated with glyphosate 3 days after treatment. In absence of glyphosate treatment, high EPSPS gene copy number had only a subtle effect on transcriptional regulation of AAA and BCAA pathway genes. In contrast, glyphosate treatment provoked a general accumulation of the transcripts corresponding to genes of the AAA pathway leading to synthesis of chorismate in both GS and GR. After chorismate, anthranilate synthase transcript abundance was higher while chorismate mutase transcription showed a small decrease in GR and remained stable in GS, suggesting a regulatory branch point in the pathway that favors synthesis toward tryptophan over phenylalanine and tyrosine after glyphosate treatment. This was confirmed by studying enzyme activities in vitro and amino acid analysis. Importantly, this upregulation was glyphosate dose dependent and was observed similarly in both GS and GR populations. Glyphosate treatment also had a slight effect on the expression of BCAA genes but no general effect on the pathway could be observed. Taken together, our observations suggest that the high CNV of EPSPS in A. palmeri GR populations has no major pleiotropic effect on the expression of AAA biosynthetic genes, even in response to glyphosate treatment. This finding supports the idea that the fitness cost associated with EPSPS CNV in A. palmeri may be limited.
  • PublicationOpen Access
    An aerated axenic hydroponic system for the application of root treatments: exogenous pyruvate as a practical case
    (BioMed Central, 2018) Gil Monreal, Miriam; Fernández Escalada, Manuel; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: Hydroponic systems are a convenient platform for plant cultivation when treatments are applied to the roots because they provide precise control of the composition of the growth medium, ensuring the availability of different compounds. A problem arises when axenic conditions are needed but the treatment of choice (exogenous organic acids or sugars) promote the growth of unwanted microorganisms. Moreover, axenic conditions are usually applied in liquid and semi-liquid growing systems, where oxygen availability can be compromised, if no aeration is provided. Results: The driver for the development of this hydroponic system was the application of the organic acid pyruvate to the roots of plants grown under aerated axenic conditions. No contamination was detected in the nutrient solution, even after the addition of pyruvate. The system was validated in pea plants treated with either pyruvate or herbicides inhibiting amino acid biosynthesis. The effects on ethanol fermentation were compared by analysing the enzymatic activity, protein content and transcriptional levels in plants treated with either pyruvate or herbicides. Conclusions: The developed system enables the study of the exogenous application of organic acids in the nutrient solution under axenic conditions and without oxygen limitation. This system allows the study of the effect of any type of treatments applied to roots under aerated axenic hydroponic systems at physiological and molecular levels. The role of pyruvate in the induction of fermentation by herbicides cannot be simply explained by an increase in substrate availability.
  • PublicationOpen Access
    Proteolytic pathways induced by herbicides that inhibit amino acid biosynthesis
    (Public Library of Science, 2013) Zulet González, Amaia; Gil Monreal, Miriam; Villamor, Joji Grace; Zabalza Aznárez, Ana; Hoorn, Renier A.L. van der; Royuela Hernando, Mercedes; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results: Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides.Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion: These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined
  • PublicationOpen Access
    Role of glutathione S-transferases in the mode of action of herbicides that inhibit amino acid synthesis in Amaranthus palmeri
    (Elsevier, 2024) Eceiza, Mikel Vicente; Jiménez Martínez, Clara; Gil Monreal, Miriam; Barco Antoñanzas, María; Font Farre, María; Huybrechts, Michiel; Van der Hoorn, Reiner; Cuypers, Ann; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Acetolactate synthase inhibitors (ALS inhibitors) and glyphosate are two classes of herbicides that act by inhibiting an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. Besides amino acid synthesis inhibition, both herbicides trigger similar physiological effects in plants. The main aim of this study was to evaluate the role of glutathione metabolism, with special emphasis on glutathione S-transferases (GSTs), in the mode of action of glyphosate and ALS inhibitors in Amaranthus palmeri. For that purpose, plants belonging to a glyphosate-sensitive (GLS) and a glyphosate-resistant (GLR) population were treated with different doses of glyphosate, and plants belonging to an ALS-inhibitor sensitive (AIS) and an ALS-inhibitor resistant (AIR) population were treated with different doses of the ALS inhibitor nicosulfuron. Glutathione-related contents, GST activity, and related gene expressions (glutamate-cysteine ligase, glutathione reductase, Phi GST and Tau GST) were analysed in leaves. According to the results of the analytical determinations, there were virtually no basal differences between GLS and GLR plants or between AIS and AIR plants. Glutathione synthesis and turnover did not follow a clear pattern in response to herbicides, but GST activity and gene expression (especially Phi GSTs) increased with both herbicides in treated sensitive plants, possibly related to the rocketing H2O2 accumulation. As GSTs offered the clearest results, these were further investigated with a multiple resistant (MR) population, compressing target-site resistance to both glyphosate and the ALS inhibitor pyrithiobac. As in single-resistant plants, measured parameters in the MR population were unaffected by herbicides, meaning that the increase in GST activity and expression occurs due to herbicide interactions with the target enzymes.
  • PublicationOpen Access
    Efecto del glifosato en la expresión génica de la ruta del siquimato en Amaranthus palmeri
    (Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2017) Fernández Escalada, Manuel; Zulet González, Ainhoa; Gil Monreal, Miriam; Zabalza Aznárez, Ana; Royuela Hernando, Mercedes; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Este estudio ha abordado el efecto del herbicida glifosato en la regulación de la ruta del siquimato en la especie Amaranthus palmeri, comparando una población sensible a glifosato con una población resistente. Se han determinado, mediante PCR cuantitativa (qPCR), el efecto de dos dosis de glifosato sobre la expresión génica de los enzimas de la ruta del siquimato. También se ha determinado la actividad enzimática de los enzimas post-corismato antranilato sintasa (AS) y corismato mutasa (CM). Se ha podido observar que el gran aumento en el número de copias génicas del enzima EPSPS en la población resistente no tiene un efecto pleiotrópico basal en la expresión de los demás genes de esta ruta de síntesis de los aminoácidos aromáticos. Tras el tratamiento con glifosato, se observó, en ambas poblaciones, una inducción general de la expresión de los genes de la ruta del siquimato, dependiente de la dosis de glifosato. Es destacable que la aplicación del glifosato provoca el aumento de la expresión y actividad AS, y la tendencia opuesta en expresión CM, lo que conlleva un flujo preferente hacia la formación de triptófano en lugar de tirosina y fenilalanina.
  • PublicationOpen Access
    Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis
    (BioMed Central, 2015) Faus, Isabel; Zabalza Aznárez, Ana; Santiago, Julia; Nebauer, Sergio G.; Royuela Hernando, Mercedes; Serrano, Ramón; Gadea, José; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Background: The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. Results: In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out mutant seedlings show that the molecular programme that the plant deploys after the treatment with the herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate. Conclusions: These results points to an unknown GCN2-dependent factor involved in the cascade of events triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of enzyme inhibition.
  • PublicationOpen Access
    Fermentation and alternative oxidase contribute to the action of amino acid biosynthesis-inhibiting herbicides
    (Elsevier, 2015) Zulet González, Amaia; Gil Monreal, Miriam; Zabalza Aznárez, Ana; Dongen, Joost T. van; Royuela Hernando, Mercedes; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Acetolactate synthase inhibitors (ALS-inhibitors) and glyphosate (GLP) are two classes of herbicide that act by the specific inhibition of an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. The physiological effects that are detected after application of these two classes of herbicides are not fully understood in relation to the primary biochemical target inhibition, although they have been well documented. Interestingly, the two herbicides’ toxicity includes some common physiological effects suggesting that they kill the treated plants by a similar pattern despite targeting different enzymes. The induction of aerobic ethanol fermentation and alternative oxidase (AOX) are two examples of these common effects. The objective of this work was to gain further insight into the role of fermentation and AOX induction in the toxic consequences of ALS-inhibitors and GLP. For this, Arabidopsis T-DNA knockout mutants of alcohol dehydrogenase (ADH) 1 and AOX1a were used. The results found in wild-type indicate that both GLP and ALS-inhibitors reduce ATP production by inducing fermentation and alternative respiration. The main physiological effects in the process of herbicide activity upon treated plants were accumulation of carbohydrates and total free amino acids. The effects of the herbicides on these parameters were less pronounced in mutants compared to wild-type plants. The role of fermentation and AOX regarding pyruvate availability is also discussed.
  • PublicationOpen Access
    The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots
    (Elsevier, 2017) Zabalza Aznárez, Ana; Orcaray Echeverría, Luis; Fernández Escalada, Manuel; Zulet González, Ainhoa; Royuela Hernando, Mercedes; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The shikimate pathway is a metabolic route for the biosynthesis of aromatic amino acids (AAAs) (i.e. phenylalanine, tyrosine, and tryptophan). A key enzyme of shikimate pathway (5-enolpyruvylshikimate-3-phosphate synthase, EPSPS) is the target of the widely used herbicide glyphosate. Quinate is a compound synthesized in plants through a side branch of the shikimate pathway. Glyphosate provokes quinate accumulation and exogenous quinate application to plants shows a potential role of quinate in the toxicity of the herbicide glyphosate. Based on this, we hypothesized that the role of quinate accumulation in the toxicity of the glyphosate would be mediated by a deregulation of the shikimate pathway. In this study the effect of the glyphosate and of the exogenous quinate was evaluated in roots of pea plants by analyzing the time course of a full metabolic map of several metabolites of shikimate and phenylpropanoid pathways. Glyphosate application induced an increase of the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS, first enzyme of the shikimate pathway) protein and accumulation of metabolites upstream of the enzyme EPSPS. No common effects on the metabolites and regulation of shikimate pathway were detected between quinate and glyphosate treatments, supporting that the importance of quinate in the mode of action of glyphosate is not mediated by a common alteration of the regulation of the shikimate pathway. Contrary to glyphosate, the exogenous quinate supplied was probably incorporated into the main trunk from the branch pathway and accumulated in the final products, such as lignin, concomitant with a decrease in the amount of DAHPS protein.
  • PublicationOpen Access
    Unravelling the phytotoxic effects of glyphosate on sensitive and resistant Amaranthus Palmeri populations by GC-MS and LC-MS metabolic profiling
    (MDPI, 2023) Zulet González, Ainhoa; Gorzolka, Karin; Döll, Stefanie; Gil Monreal, Miriam; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Glyphosate, the most successful herbicide in history, specifically inhibits the activity of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19), one of the key enzymes in the shikimate pathway. Amaranthus palmeri is a driver weed in agriculture today that has evolved glyphosate-resistance through increased EPSPS gene copy number and other mechanisms. Non-targeted GC–MS and LC–MS metabolomic profiling was conducted to examine the innate physiology and the glyphosate-induced perturbations in one sensitive and one resistant (by EPSPS amplification) population of A. palmeri. In the absence of glyphosate treatment, the metabolic profile of both populations was very similar. The comparison between the effects of sublethal and lethal doses on sensitive and resistant populations suggests that lethality of the herbicide is associated with an amino acid pool imbalance and accumulation of the metabolites of the shikimate pathway upstream from EPSPS. Ferulic acid and its derivatives were accumulated in treated plants of both populations, while quercetin and its derivative contents were only lower in the resistant plants treated with glyphosate.