Zabalza Aznárez, Ana

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Zabalza Aznárez

First Name

Ana

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Quinate-enhanced glyphosate toxicity is related to the accumulation of quinate derivatives
    (Elsevier, 2024) Zulet González, Ainhoa; Gil Monreal, Miriam; Gorzolka, Karin; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Glyphosate is the most widely used herbicide and works by inhibiting the enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) of the shikimate pathway, preventing the aromatic amino acid biosynthesis. When applied to plants, it provokes the accumulation of quinate, a metabolite synthesized through a side branch of the shikimate pathway. The joint application of glyphosate and quinate enhanced glyphosate efficacy on Amaranthus palmeri, requiring one-quarter of the recommended dose of glyphosate for complete control. Expression of the genes of the shikimate pathway and non-targeted GC-MS metabolic profiling were conducted to compare the physiological response after glyphosate, quinate or the combination of both. A perturbed gene expression of the shikimate pathway was detected after quinate applied alone, while no relevant changes in the metabolome were detected. The sub-lethal glyphosate treatment induced gene expression in the shikimate pathway, accumulation of the metabolites located upstream EPSPS and disturbances in the amino acid content. The exacerbation of the phytotoxicity in the lethal combined treatment was not related to any specific change in the expression level of the shikimate pathway. Metabolic profiling indicated that the accumulation of quinate and quinate derivatives detected after quinate applied alone was severely enhanced after the combined treatment of quinate and glyphosate.
  • PublicationOpen Access
    Role of oxidative stress in the physiology of sensitive and resistant Amaranthus palmeri populations treated with herbicides inhibiting acetolactate synthase
    (Frontiers Media, 2023) Eceiza, Mikel Vicente; Barco Antoñanzas, María; Gil Monreal, Miriam; Huybrechts, Michiel; Zabalza Aznárez, Ana; Cuypers, Ann; Royuela Hernando, Mercedes; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The aim of the present study was to elucidate the role of oxidative stress in the mode of action of acetolactate synthase (ALS) inhibiting herbicides. Two populations of Amaranthus palmeri S. Watson from Spain (sensitive and resistant to nicosulfuron, due to mutated ALS) were grown hydroponically and treated with different rates of the ALS inhibitor nicosulfuron (one time and three times the field recommended rate). Seven days later, various oxidative stress markers were measured in the leaves: H2O2, MDA, ascorbate and glutathione contents, antioxidant enzyme activities and gene expression levels. Under control conditions, most of the analysed parameters were very similar between sensitive and resistant plants, meaning that resistance is not accompanied by a different basal oxidative metabolism. Nicosulfuron-treated sensitive plants died after a few weeks, while the resistant ones survived, independently of the rate. Seven days after herbicide application, the sensitive plants that had received the highest nicosulfuron rate showed an increase in H2O2 content, lipid peroxidation and antioxidant enzymatic activities, while resistant plants did not show these responses, meaning that oxidative stress is linked to ALS inhibition. A supralethal nicosulfuron rate was needed to induce a significant oxidative stress response in the sensitive population, providing evidence that the lethality elicited by ALS inhibitors is not entirely dependent on oxidative stress.
  • PublicationOpen Access
    Increased glyphosate-induced gene expression in the shikimate pathway is abolished in the presence of aromatic amino acids and mimicked by shikimate
    (Frontiers Media, 2020) Zulet González, Ainhoa; Barco Antoñanzas, María; Gil Monreal, Miriam; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway, also known as the shikimate pathway. Amaranthus palmeri is a fast-growing weed, and several populations have evolved resistance to glyphosate through increased EPSPS gene copy number. The main objective of this study was to elucidate the regulation of the shikimate pathway and determine whether the regulatory mechanisms of glyphosate-sensitive and glyphosate-resistant plants were different. Leaf disks of sensitive and resistant (due to EPSPS gene amplification) A. palmeri plants were incubated for 24 h with glyphosate, AAA, glyphosate + AAA, or several intermediates of the pathway: shikimate, quinate, chorismate and anthranilate. In the sensitive population, glyphosate induced shikimate accumulation and induced the gene expression of the shikimate pathway. While AAA alone did not elicit any change, AAA applied with glyphosate abolished the effects of the herbicide on gene expression. It was not possible to fully mimic the effect of glyphosate by incubation with any of the intermediates, but shikimate was the intermediate that induced the highest increase (three-fold) in the expression level of the genes of the shikimate pathway of the sensitive population. These results suggest that, in this population, the lack of end products (AAA) of the shikimate pathway and shikimate accumulation would be the signals inducing gene expression in the AAA pathway after glyphosate application. In general, the effects on gene expression detected after the application of the intermediates were more severe in the sensitive population than in the resistant population. These results suggest that when EPSPS is overexpressed, as in the resistant population, the regulatory mechanisms of the AAA pathway are disrupted or buffered. The mechanisms underlying this behavior remain to be elucidated.
  • PublicationOpen Access
    Cysteine proteases are activated in sensitive Amaranthus palmeri populations upon treatment with herbicides inhibiting amino acid biosynthesis
    (Wiley, 2023) Barco Antoñanzas, María; Font Farre, María; Eceiza, Mikel Vicente; Gil Monreal, Miriam; Van der Hoorn, Reiner; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The herbicides glyphosate and pyrithiobac inhibit the enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid biosynthetic pathway and acetolactate synthase (ALS) in the branched-chain amino acid biosynthetic pathway, respectively. Here we characterise the protease activity profiles of a sensitive (S), a glyphosate-resistant (GR) and a multiple-resistant (MR) population of Amaranthus palmeri in response to glyphosate and pyrithiobac. Amino acid accumulation and cysteine protease activities were induced with both herbicides in the S population and with pyrithiobac in the GR population, suggesting that the increase in cysteine proteases is responsible for the increased degradation of the available proteins and the observed increase in free amino acids. Herbicides did not induce any changes in the proteolytic activities in the populations with target-site resistance, indicating that this effect was only induced in sensitive plants.