Zabalza Aznárez, Ana
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Zabalza Aznárez
First Name
Ana
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access Quinate-enhanced glyphosate toxicity is related to the accumulation of quinate derivatives(Elsevier, 2024) Zulet González, Ainhoa; Gil Monreal, Miriam; Gorzolka, Karin; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMABGlyphosate is the most widely used herbicide and works by inhibiting the enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) of the shikimate pathway, preventing the aromatic amino acid biosynthesis. When applied to plants, it provokes the accumulation of quinate, a metabolite synthesized through a side branch of the shikimate pathway. The joint application of glyphosate and quinate enhanced glyphosate efficacy on Amaranthus palmeri, requiring one-quarter of the recommended dose of glyphosate for complete control. Expression of the genes of the shikimate pathway and non-targeted GC-MS metabolic profiling were conducted to compare the physiological response after glyphosate, quinate or the combination of both. A perturbed gene expression of the shikimate pathway was detected after quinate applied alone, while no relevant changes in the metabolome were detected. The sub-lethal glyphosate treatment induced gene expression in the shikimate pathway, accumulation of the metabolites located upstream EPSPS and disturbances in the amino acid content. The exacerbation of the phytotoxicity in the lethal combined treatment was not related to any specific change in the expression level of the shikimate pathway. Metabolic profiling indicated that the accumulation of quinate and quinate derivatives detected after quinate applied alone was severely enhanced after the combined treatment of quinate and glyphosate.Publication Open Access Role of glutathione S-transferases in the mode of action of herbicides that inhibit amino acid synthesis in Amaranthus palmeri(Elsevier, 2024) Eceiza, Mikel Vicente; Jiménez Martínez, Clara; Gil Monreal, Miriam; Barco Antoñanzas, María; Font Farre, María; Huybrechts, Michiel; Van der Hoorn, Reiner; Cuypers, Ann; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAcetolactate synthase inhibitors (ALS inhibitors) and glyphosate are two classes of herbicides that act by inhibiting an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. Besides amino acid synthesis inhibition, both herbicides trigger similar physiological effects in plants. The main aim of this study was to evaluate the role of glutathione metabolism, with special emphasis on glutathione S-transferases (GSTs), in the mode of action of glyphosate and ALS inhibitors in Amaranthus palmeri. For that purpose, plants belonging to a glyphosate-sensitive (GLS) and a glyphosate-resistant (GLR) population were treated with different doses of glyphosate, and plants belonging to an ALS-inhibitor sensitive (AIS) and an ALS-inhibitor resistant (AIR) population were treated with different doses of the ALS inhibitor nicosulfuron. Glutathione-related contents, GST activity, and related gene expressions (glutamate-cysteine ligase, glutathione reductase, Phi GST and Tau GST) were analysed in leaves. According to the results of the analytical determinations, there were virtually no basal differences between GLS and GLR plants or between AIS and AIR plants. Glutathione synthesis and turnover did not follow a clear pattern in response to herbicides, but GST activity and gene expression (especially Phi GSTs) increased with both herbicides in treated sensitive plants, possibly related to the rocketing H2O2 accumulation. As GSTs offered the clearest results, these were further investigated with a multiple resistant (MR) population, compressing target-site resistance to both glyphosate and the ALS inhibitor pyrithiobac. As in single-resistant plants, measured parameters in the MR population were unaffected by herbicides, meaning that the increase in GST activity and expression occurs due to herbicide interactions with the target enzymes.Publication Open Access Primary metabolism in an Amaranthus palmeri population with multiple resistance to glyphosate and pyrithiobac herbicides(Elsevier, 2022) Barco Antoñanzas, María; Gil Monreal, Miriam; Eceiza, Mikel Vicente; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA 2010The objective of this work was to characterize the resistance mechanisms and the primary metabolism of a multiple resistant (MR) population of Amaranthus palmeri to glyphosate and to the acetolactate synthase (ALS) inhibitor pyrithiobac. All MR plants analysed were glyphosate-resistant due to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification. Resistance to pyrithiobac was more variable among individuals and was related to point mutations at five positions in the ALS gene sequence: A122, A205, W574, S653 and G654. All MR plants were heterozygous for W574, the most abundant mutation. In nontreated plants, the presence of mutations did not affect ALS functionality, and plants with the W574L mutation showed the highest ALS resistance level to pyrithiobac. The accumulation of the transcripts corresponding to several genes of the aromatic amino acid (AAA) and branched-chain amino acid (BCAA) pathways detected in nontreated MR plants indicated additional effects of EPSPS gene amplification and ALS mutations. The physiological performance of the MR population after treatment with glyphosate and/or pyrithiobac was compared with that of a sensitive (S) population. The increase induced in total soluble sugars, AAA or BCAA content by both herbicides was higher in the S population than in the MR population. Physiological effects were not exacerbated after the mixture of both herbicides in S or in MR populations. This study provides new insights into the physiology of a multiple resistant A. palmeri, which could be very useful for achieving effective management of this weed.Publication Open Access Increased glyphosate-induced gene expression in the shikimate pathway is abolished in the presence of aromatic amino acids and mimicked by shikimate(Frontiers Media, 2020) Zulet González, Ainhoa; Barco Antoñanzas, María; Gil Monreal, Miriam; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway, also known as the shikimate pathway. Amaranthus palmeri is a fast-growing weed, and several populations have evolved resistance to glyphosate through increased EPSPS gene copy number. The main objective of this study was to elucidate the regulation of the shikimate pathway and determine whether the regulatory mechanisms of glyphosate-sensitive and glyphosate-resistant plants were different. Leaf disks of sensitive and resistant (due to EPSPS gene amplification) A. palmeri plants were incubated for 24 h with glyphosate, AAA, glyphosate + AAA, or several intermediates of the pathway: shikimate, quinate, chorismate and anthranilate. In the sensitive population, glyphosate induced shikimate accumulation and induced the gene expression of the shikimate pathway. While AAA alone did not elicit any change, AAA applied with glyphosate abolished the effects of the herbicide on gene expression. It was not possible to fully mimic the effect of glyphosate by incubation with any of the intermediates, but shikimate was the intermediate that induced the highest increase (three-fold) in the expression level of the genes of the shikimate pathway of the sensitive population. These results suggest that, in this population, the lack of end products (AAA) of the shikimate pathway and shikimate accumulation would be the signals inducing gene expression in the AAA pathway after glyphosate application. In general, the effects on gene expression detected after the application of the intermediates were more severe in the sensitive population than in the resistant population. These results suggest that when EPSPS is overexpressed, as in the resistant population, the regulatory mechanisms of the AAA pathway are disrupted or buffered. The mechanisms underlying this behavior remain to be elucidated.Publication Open Access The moderate oxidative stress induced by glyphosate is not detected in Amaranthus palmeri plants overexpressing EPSPS(Elsevier, 2022) Gil Monreal, Miriam; Barco Antoñanzas, María; Zabalza Aznárez, Ana; Royuela Hernando, Mercedes; Eceiza, Mikel Vicente; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe present study aimed to determine whether glyphosate-induced oxidative stress is directly related to the action mechanism of this herbicide (5-enolpyruvylshikimate-3-phosphate synthase or EPSPS inhibition) and analyse the role of oxidative stress in glyphosate toxicity of the weed Amaranthus palmeri S. Wats. Two kinds of populations were studied using EPSPS amplification: glyphosate-sensitive and glyphosate-resistant (by gene amplification). Plants were grown hydroponically and treated with different glyphosate doses, after which several oxidative stress markers were measured in the leaves. Untreated, sensitive and resistant plants showed similar values for the analysed parameters. Treated glyphosate-sensitive plants showed an increase in shikimate, superoxide and H2O2 contents and dose-dependent lipid peroxidation and antioxidant responses; however, none of these effects were observed in resistant plants, indicating that glyphosate-induced oxidative stress is related to EPSPS inhibition. Oxidative stress is associated with an increase in the activity of peroxidases due to EPSPS inhibition, although the link between both processes remains elusive. The fact that some glyphosate doses were lethal but did not induce major oxidative damage provides evidence that glyphosate toxicity is independent of oxidative stress.Publication Open Access Cysteine proteases are activated in sensitive Amaranthus palmeri populations upon treatment with herbicides inhibiting amino acid biosynthesis(Wiley, 2023) Barco Antoñanzas, María; Font Farre, María; Eceiza, Mikel Vicente; Gil Monreal, Miriam; Van der Hoorn, Reiner; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe herbicides glyphosate and pyrithiobac inhibit the enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid biosynthetic pathway and acetolactate synthase (ALS) in the branched-chain amino acid biosynthetic pathway, respectively. Here we characterise the protease activity profiles of a sensitive (S), a glyphosate-resistant (GR) and a multiple-resistant (MR) population of Amaranthus palmeri in response to glyphosate and pyrithiobac. Amino acid accumulation and cysteine protease activities were induced with both herbicides in the S population and with pyrithiobac in the GR population, suggesting that the increase in cysteine proteases is responsible for the increased degradation of the available proteins and the observed increase in free amino acids. Herbicides did not induce any changes in the proteolytic activities in the populations with target-site resistance, indicating that this effect was only induced in sensitive plants.