Azpilicueta Fernández de las Heras, Leyre

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Azpilicueta Fernández de las Heras

First Name

Leyre

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 79
  • PublicationOpen Access
    Design and empirical validation of a LoRaWAN IoT Smart Irrigation System
    (MDPI, 2020) Fraga Lamas, Paula; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Fernández Caramés, Tiago M.; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In some parts of the world, climate change has led to periods of drought that require managing efficiently the scarce water and energy resources. This paper proposes an IoT smart irrigation system specifically designed for urban areas where remote IoT devices have no direct access to the Internet or to the electrical grid, and where wireless communications are difficult due to the existence of long distances and multiple obstacles. To tackle such issues, this paper proposes a LoRaWAN-based architecture that provides long distance and communications with reduced power consumption. Specifically, the proposed system consists of IoT nodes that collect sensor data and send them to local fog computing nodes or to a remote cloud, which determine an irrigation schedule that considers factors such as the weather forecast or the moist detected by nearby nodes. It is essential to deploy the IoT nodes in locations within the provided coverage range and that guarantee good speed rates and reduced energy consumption. Due to this reason, this paper describes the use of an in-house 3D-ray launching radio-planning tool to determine the best locations for IoT nodes on a real medium-scale scenario (a university campus) that was modeled with precision, including obstacles such as buildings, vegetation, or vehicles. The obtained simulation results were compared with empirical measurements to assess the operating conditions and the radio planning tool accuracy. Thus, it is possible to optimize the wireless network topology and the overall performance of the network in terms of coverage, cost, and energy consumption.
  • PublicationOpen Access
    Challenges in wireless system integration as enablers for indoor context aware environments
    (MDPI, 2017) López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática
    The advent of fully interactive environments within Smart Cities and Smart Regions requires the use of multiple wireless systems. In the case of user-device interaction, which finds multiple applications such as Ambient Assisted Living, Intelligent Transportation Systems or Smart Grids, among others, large amount of transceivers are employed in order to achieve anytime, anyplace and any device connectivity. The resulting combination of heterogeneous wireless network exhibits fundamental limitations derived from Coverage/Capacity relations, as a function of required Quality of Service parameters, required bit rate, energy restrictions and adaptive modulation and coding schemes. In this context, inherent transceiver density poses challenges in overall system operation, given by multiple node operation which increases overall interference levels. In this work, a deterministic based analysis applied to variable density wireless sensor network operation within complex indoor scenarios is presented, as a function of topological node distribution. The extensive analysis derives interference characterizations, both for conventional transceivers as well as wearables, which provide relevant information in terms of individual node configuration as well as complete network layout.
  • PublicationOpen Access
    Implementation of wireless sensor network architecture for interactive shopping carts to enable context-aware commercial areas
    (IEEE, 2016) López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Aguirre Gallego, Erik; Salinero, Eduardo; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC
    An interactive shopping cart to enable context aware environments within large commercial areas is presented. A wireless sensor network was designed, with specific nodes embedded within the shopping carts and infrastructure nodes in the shopping area. Due to the complexity of wireless propagation, given the large amount of obstacles and the inclusion of users, an in house deterministic method based on 3D Ray Launching was employed, providing results in terms of adequate transceiver deployment to minimize interference, energy consumption and maximize data throughput. The proposed system was tested in a real commercial scenario, with the implementation of an ad-hoc monitor shopping application, exhibiting successful detection rates in order of 99%. The proposed systems provides an interactive shopping experience for users as well as for commercial managers.
  • PublicationOpen Access
    Validation of 3D simulation tool for radio channel modeling at 60 GHz: a meeting point for empirical and simulation-based models
    (Elsevier, 2020) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; García Sánchez, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The radio channel modelling of the millimeter wave bands for the fifth generation of wireless mobile communications, appears as a challenge for both empirical and simulation approaches. In this paper we discuss the use of experimental datasets for validation of a simulation tool based on deterministic 3D ray-launching technique. The goal it twofold: validating the simulation tool and achieving more consistent results considering the restrictions and performance limits of hardware elements. A microcell canyon street scenario has been chosen for interleaving ray launching prediction and empirical analysis. Simulation results such as received power or angular distribution of path loss, as well as channel dispersion parameters such as root-mean-square delay spread have been presented. In addition, the line-of-sight to non-line-of-sight transition has been modeled as a result of the empirical-simulation interaction. Comparison of simulation and measurement results for the proposed microcellular urban scenario exhibit good agreement, validating the proposed methodology. (C) 2020 Elsevier Ltd. All rights reserved.
  • PublicationOpen Access
    Evaluation of deployment challenges of wireless sensor networks at signalized intersections
    (MDPI, 2016) Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Martínez Carrasco, Carlos; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática
    With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network.
  • PublicationOpen Access
    Performance analysis of ZigBee wireless networks for AAL through hybrid ray launching and collaborative filtering
    (Hindawi, 2016) López Iturri, Peio; Casino, Fran; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Solanas, Agustí; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    This paper presents a novel hybrid simulation method based on the combination of an in-house developed 3D ray launching algorithm and a collaborative filtering (CF) technique, which will be used to analyze the performance of ZigBee-based wireless sensor networks (WSNs) to enable ambient assisted living (AAL). The combination of Low Definition results obtained by means of a deterministic ray launching method and the application of a CF technique leads to a drastic reduction of the time and computational cost required to obtain accurate simulation results. The paper also reports that this kind of AAL indoor complex scenario withmultiple wireless devices needs a thorough and personalized radioplanning analysis as radiopropagation has a strong dependence on the network topology and the specific morphology of the scenario. The wireless channel analysis performed by our hybrid method provides valuable insight into network design phases of complex wireless systems, typical in AAL-oriented environments.Thus, it results in optimizing network deployment, reducing overall interference levels, and increasing the overall system performance in terms of cost reduction, transmission rates, and energy efficiency.
  • PublicationOpen Access
    IVAN: Intelligent van for the distribution of pharmaceutical drugs
    (MDPI, 2012) Moreno, Asier; Angulo Martínez, Ignacio; Perallos Ruiz, Asier; Landaluce, Hugo; García Zuazola, Ignacio Julio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza
    This paper describes a telematic system based on an intelligent van which is capable of tracing pharmaceutical drugs over delivery routes from a warehouse to pharmacies, without altering carriers' daily conventional tasks. The intelligent van understands its environment, taking into account its location, the assets and the predefined delivery route; with the capability of reporting incidences to carriers in case of failure according to the established distribution plan. It is a non-intrusive solution which represents a successful experience of using smart environments and an optimized Radio Frequency Identification (RFID) embedded system in a viable way to resolve a real industrial need in the pharmaceutical industry. The combination of deterministic modeling of the indoor vehicle, the implementation of an ad-hoc radiating element and an agile software platform within an overall system architecture leads to a competitive, flexible and scalable solution.
  • PublicationOpen Access
    Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network
    (IEEE, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; Wang, Yan; Azpilicueta Fernández de las Heras, Leyre; Naser Moghadasi, Mohammad; See, Chan H.; Elfergani, Issa; Zebiri, Chemseddine; Abd-Alhameed, Raed; Huynen, Isabelle; Rodriguez, Jonathan; Denidni, Tayeb A.; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper a metamaterial-inspired T-matching network is directly imbedded inside the feedline of a microstrip antenna to realize optimum power transfer between the front-end of an RF Wireless transceiver and the antenna. The proposed T-matching network, which is composed of an arrangement of series capacitor, shunt inductor, series capacitor, exhibits left-handed metamaterial characteristics. The matching network is first theoretically modelled to gain insight of its limitations. It was then implemented directly in the 50-Ω feedline to a standard circular patch antenna, which is an unconventional methodology. The antenna’s performance was verified through measurements. With the proposed technique there is 2.7 dBi improvement in the antenna’s radiation gain and 12% increase in the efficiency at the center frequency,and this is achieved over a significantly wider frequency range by a factor of approximately twenty. Moreover, there is good correlation between the theoretical model, method of moments simulation, and the measurement results.
  • PublicationOpen Access
    A comprehensive survey of 'metamaterial transmission-line based antennas: design, challenges, and applications'
    (IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; Azpilicueta Fernández de las Heras, Leyre; Naser Moghadasi, Mohammad; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this review paper, a comprehensive study on the concept, theory, and applications of composite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs have been provided. It is shown that CRLH-TLs with negative permittivity (< 0) and negative permeability (μ < 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial structures called 'metamaterials'. These artificial structures include series left-handed (LH) capacitances (CL), shunt LH inductances (LL), series right-handed (RH) inductances (LR), and shunt RH capacitances (CR) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives, since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence, a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the performance parameters that are rare and not often discussed in available literature. Therefore, this survey provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial theory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials, gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterial-TLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue of study that have a strong impact for the enlargement of the next generation wireless communication systems.
  • PublicationOpen Access
    Spatial characterization of personal RF-EMF exposure in public transportation buses
    (IEEE, 2019) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Miguel Bilbao, Silvia de; Ramos, Victoria; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    New services and applications within vehicular environments employ multiple wireless communication systems, within a Heterogeneous Network framework. In this context, evaluation of electromagnetic field impact is compulsory, in order to warrant compliance with current exposure limits. In this work, E-field strength distribution within urban transportation buses is studied, in which different types of buses as well as network configurations are considered. E-field estimations are obtained within the complete interior volume of the urban buses, considering all of the characteristics in terms of bus structure and materials employed, by means of an in-house developed deterministic 3D Ray-Launching (3D-RL) code. In this way, relevant phenomena in terms of electromagnetic propagation and interaction are considered, such as multipath propagation and shadowing, which determine exposure levels as a function of transceiver location within the bus scenarios. The behavior in terms of E-field distribution of wireless Public Land Mobile communication systems within transportation buses have been analyzed by means of measurement campaigns employing personal exposimeter devices. In addition, E-field volumetric distributions by means of 3D-RL simulations have been obtained as a function of user distribution within the buses, with the aim of analyzing the impact of user presence within complex intra-vehicular indoor scenarios such as urban transportation buses. A comparison with current exposure limits given by currently adopted standards is obtained, showing that E-field levels were below the aforementioned limits. The use of deterministic simulation techniques based on 3D-RL enables E-field exposure analysis in complex indoor scenarios, offering an optimized balance between accuracy and computational cost. These results and the proposed simulation methodology, can aid in an adequate assessment of human exposure to non-ionizing radiofrequency fields in public transportation buses, considering the impact of the morphology and the topology of vehicles, for current as well as for future wireless technologies and exposure limits.